Forwarding vs Routing

goal

scope

implem.

timescale

directing packet to
an outgoing link

local

hardware

usually

nanoseconds

computing the paths
packets will follow

network-wide

software

usually

milliseconds
(hopefully)

Forwarding Depends on Destination, but Can Also Consider Other Criteria

e Destination - Why is this mandatory?
e Source
e |nput port

e Any other header field

Forwarding on Both Source and Destination - Paths from Different Sources can Differ

src dest output

A X East

X South-East

Destination-Based Routing, Once Paths from Sources Overlap They Remain the Same

Dijkstra’s Algorithm for Shortest Path Search

Forwarding Table Comes from Dijkstra’s Algorithm Results

destination

outgoing link

\"

X
Y
w
X

(ulv)]
(u,x)
(u,x)
(u,x)

(u,x)

resulting forwarding table in u:

route from u to v directly

route from u to all
other destinations
via x

Dijkstra’s Algorithm for Shortest Path Search

Dijkstra’s Algorithm -> Link State Routing

D’s Advertisement

e Each router floods its link state information to other

n routers in order to generate a global view S5 o

edge (D,C); cost: 4

e Updates are sent when things change, and only the
difference is sent, not everything

e Anydrawbacks you can think of?

e U: {v=2, x=1, w=5}
V: {u=2, x=2, w=3}
W: {v=3, u=5, x=3, y=1, z=5}
X: {u=1, v=2, w=3, y=1}
Y: {x=1, w=1, z=2}
Zz: {w=b, y=2}

Dynamic Weights -> Route Oscillations

o given these costs, given these costs, given these costs,
initially find new routing.... find new routing.... find new routing....
resulting in new costs resulting in new costs resulting in new costs

Dijkstra’s Example

Starting from node u, (i) manually compute
Dijkstra’s algorithm, and then (ii) list the
obtained shortest-paths from u to each of the
other nodes. For computing Dijkstra’s
algorithm, you can use the table below. The
algorithm follows the one discussed in the
lecture. If several nodes could next be added to 3]
node set S, select the node that comes first in F
the alphabet.

Dijkstra’s Example

Starting from node u, (i) manually compute Dijkstra’s
algorithm, and then (ii) list the obtained shortest-paths
from u to each of the other nodes. For computing
Dijkstra’s algorithm, you can use the table below. The
algorithm follows the one discussed in the lecture. If
several nodes could next be added to node set S, select
the node that comes first in the alphabet.

Node Path > (weights)
A u-A 2
B u-C-B 3
8 u-_C 1
D u-C-D 2
.1 nu-C-B-E >
F u-C-B-E-H-F 7
G u-C-D-G 5
H u-C-B-E-H 6

Reverse Dijkstra is Possible From Results

®

@ I #| U I A B ’ (6! ’ D E F G H I

1 0 2 3 1 - = - 10 . 11

@ @ 2 0 2 2 1 8 - - 10 - 11
3 0 2 2 1 8 5 - 10 = 11

4 0 2 2 1 8 100 . 10 " 11

5 0 2 2 1 8 9 15 10 . 11

6 0 2 2 1 8 9 15 10 = 11

@ @ @ 7 0 2 2 1 8 9 13 10 14 11
8 0 2 2 1 8 9 12 10 14 11

@ 9 0 2 2 1 8 9 12 10 13 11

0] o 2 2 1 8 9 12 10 13 11

@ For each iteration (1 to 10) the table shows the shortest path found by Dijkstra’s algorithm performed on node U towards
all other nodes.

A network consisting of 10 nodes with unknown links and link weights.

Reverse Dijkstra is Possible From Results - Solution

mlol & s]8]a | ®]|F]s]
1 0 2 3 1 - - - 10 - 11
2 0 2 2 1 8 - - 10 - 11
3 0 2 2 1 8 - - 10 - 11
4 0 2 2 1 8 100 - 10 - 121
5 0 2 2 1 8 9 15 10 - 11
6 0 2 2 1 8 9 15 10 - 11
7 0 2 2 1 8 9 13 10 14 11
8 0 2 2 1 8 9 12 10 14 11
9 0 2 2 1 8 9 12 10 13 11
10 0 2 2 1 8 9 12 10 13 11

For each iteration (1 to 10) the table shows the shortest path found by Dijkstra’s algorithm performed on node U towards
all other nodes.

