Reverse Dijkstra is Possible From Results - Solution

#	U	A	В	C	D	E	F	G	Н	I
1	0	2	3	1	-	-	-	10	-	11
2	0	2	2	1	8	-	-	10	1-1	11
3	0	2	2	1	8	-	-	10	-	11
4	0	2	2	1	8	100	-	10	-	11
5	0	2	2	1	8	9	15	10	-	11
6	0	2	2	1	8	9	15	10	-	11
7	0	2	2	1	8	9	13	10	14	11
8	0	2	2	1	8	9	12	10	14	11
9	0	2	2	1	8	9	12	10	13	11
10	0	2	2	1	8	9	12	10	13	11

For each iteration (1 to 10) the table shows the shortest path found by Dijkstra's algorithm performed on node U towards all other nodes.

Reverse Dijkstra is Possible From Results

Could there be an additional link starting from node C which you could not identify based on the output from Dijkstra? If you think that is possible, give an example (link between node C and node ...) and indicate in which range the weight of this link could be. Otherwise, explain why this is not possible.

Reverse Dijkstra is Possible From Results

Could there be an additional link starting from node C which you could not identify based on the output from Dijkstra? If you think that is possible, give an example (link between node C and node ...) and indicate in which range the weight of this link could be. Otherwise, explain why this is not possible.

Solution: Possible. For example link between C and G with weight greater (or equal) than 9.

Link State Algorithms

Pros

- Fast convergence
- Event-driven updates
- Every router can determine the best path

Cons

- Computationally expensive
- Memory intensive
- If a network is constantly changing, bandwidth can suffer from overhead of messages

Link State Protocols

Open Shortest Path First (OSPF)

- Dominant LS protocol
- <u>The</u> routing protocol used within large autonomous systems external is BGP (distance vector, next up)
- Open source
- If you have a network that is larger than small (>4 routers) you're probably best off using OSPF

Routing

Link State == global view

Distance vector == local view

Rather than building routes with a global view of the network, nodes (routers) only learn from their adjacent neighbors.

Sometimes called "routing by rumor" or a "gossip" protocol

 Let d_x(y) be the cost of the least-cost path known by x to reach y

until convergence

 Let d_x(y) be the cost of the least-cost path known by x to reach y

 Each node bundles these distances into one message (called a vector) that it repeatedly sends to all its neighbors

until convergence

until convergence

- Let d_x(y) be the cost of the least-cost path known by x to reach y
- Each node bundles these distances into one message (called a vector) that it repeatedly sends to all its neighbors
- Each node updates its distances based on neighbors' vectors:
- $d_x(y) = min\{ c(x,v) + d_v(y) \}$ over all neighbors v

We'll Compute the Shortest Path from u to D

The Values Computed by a Node u Depend on What it Learns from its Neighbors (A and E)

$$d_{x}(y) = \min\{ c(x,v) + d_{v}(y) \}$$
over all neighbors v

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$d_{u}(D) = \min\{ c(u,A) + d_{A}(D), \\ c(u,E) + d_{E}(D) \}$$

To Understand, Let's Start with Direct Neighbors of D

B and C Announce Their Vectors to Their Neighbors, Which Allows A to Compute a Path to D

Any Time a Distance Vector Changes, Each Node Propagates it to its Neighbors


```
d_{E}(D) = \min \{ 1 + d_{C}(D), 
 4 + d_{C}(D), 
 2 + d_{U}(D) \}
= 5
```

The Process Eventually Converges to the Shortest Path Distance to Each Destination

$$d_{u}(D) = \min \{ 3 + d_{A}(D), 2 + d_{E}(D) \}$$

Similar to LS Routing, u can Directly Create its Forwarding Table by Directing Traffic to the

Best (whoever is advertising the lowest cost) Neighbor


```
Node X:
```

```
\begin{array}{ccccc} & X & Y & Z \\ X & 0 & 2 & 7 \\ Y & \infty & \infty & \infty \\ Z & \infty & \infty & \infty \end{array}
```

Node Y:

```
\begin{array}{ccccc} & X & Y & Z \\ X & \infty & \infty & \infty \\ Y & 2 & 0 & 1 \\ Z & \infty & \infty & \infty \end{array}
```

Node Z:

DV Solution

Distance Vector Suffers From the "Count to Infinity" Problem

Node X:

X Y Z X 0 4 5 (Ignore X for simplicity)

Node Y:

X Y Z X 0 4 5 Y 6 0 1 Z 5 1 0

Node Z:

X Y Z X 0 4 5 Y 4 0 1 Z 5 1 0

Node X:

Node Y:

Node Z:

Node Y:

Node Z:

	Χ	Y	Z		Χ	Y	
Χ	0	4	5	X	0	4	
Y	4	0	1	Y	6	0	
Ζ	5	1	0	Z	7	1	


```
Node X:
```

Node Y:

X Y Z X 0 4 5 Y 6 0 1 Z 5 1 0 Node Y:

X Y Z X 0 4 5 Y 6 0 1 Z 5 1 0 Node Y:

X Y Z X 0 4 5 Y 8 0 1 Z 7 1 0

Node Z:

X Y Z X 0 4 5 Y 4 0 1 Z 5 1 0 Node Z:

X Y Z X 0 4 5 Y 6 0 1 Z **7** 1 0 Node Z:

X Y Z X 0 4 5 Y 6 0 1 Z 7 1 0

DV Routing

"Bad News Travels Slowly, Good News Travels Fast"

Distance Vector Algorithms

Pros

- Simple to configure / maintain
- Only need a local view of the world

Cons

- Slow to converge
- Loops are possible
- Count to infinity
- Wastes bandwidth constant updates even when nothing changes