Reverse Dijkstra is Possible From Results - Solution

mlol & s]8]a | ®]|F]s]
1 0 2 3 1 - - - 10 - 11
2 0 2 2 1 8 - - 10 - 11
3 0 2 2 1 8 - - 10 - 11
4 0 2 2 1 8 100 - 10 - 121
5 0 2 2 1 8 9 15 10 - 11
6 0 2 2 1 8 9 15 10 - 11
7 0 2 2 1 8 9 13 10 14 11
8 0 2 2 1 8 9 12 10 14 11
9 0 2 2 1 8 9 12 10 13 11
10 0 2 2 1 8 9 12 10 13 11

For each iteration (1 to 10) the table shows the shortest path found by Dijkstra’s algorithm performed on node U towards
all other nodes.

Reverse Dijkstra is Possible From Results

Could there be an additional link starting
from node C which you could not identify
based on the output from Dijkstra? If you
think that is possible, give an example
(link between node C and node ...) and
indicate in which range the weight of this
link could be. Otherwise, explain why this
is not possible.

Reverse Dijkstra is Possible From Results

Could there be an additional link starting
from node C which you could not identify
based on the output from Dijkstra? If you
think that is possible, give an example (link
between node C and node ...) and indicate in
which range the weight of this link could be.
Otherwise, explain why this is not possible.

Solution: Possible. For example link between
C and G with weight greater (or equal) than 9.

Link State Algorithms

Pros Cons

e Fast convergence e Computationally expensive

e Event-driven updates e Memory intensive

e |f a network is constantly
changing, bandwidth can
suffer from overhead of
messages

e Everyrouter can determine
the best path

Link State Protocols

Open Shortest Path First (OSPF)

e Dominant LS protocol

e The routing protocol used within large autonomous systems -
external is BGP (distance vector, next up)

e Open source

e If you have a network that is larger than small (>4 routers) you're
probably best off using OSPF

Routing

Link State == global view

Distance vector == local view

Distance Vector Routing

Rather than building routes with a global view of the network, nodes
(routers) only learn from their adjacent neighbors.

e Sometimes called “routing by rumor” or a “gossip” protocol

Distance Vector Routing

e Letd (y) be the cost of the least-cost path
known by x to reach y

until convergence

Distance Vector Routing

e Letd (y) be the cost of the least-cost path
known by x to reach y

e FEach node bundles these distances into one
message (called a vector) that it repeatedly

, sends to all its neighbors
until convergence

Distance Vector Routing

until convergence

Let d (y) be the cost of the least-cost path
known by x to reach y

Each node bundles these distances into one
message (called a vector) that it repeatedly
sends to all its neighbors

Each node updates its distances based on
neighbors' vectors:

d (y) = min{ c(x,v) + d (y) } over all neighbors v

We’ll Compute the Shortest Path from u to D

The Values Computed by a Node u Depend on What it Learns from its Neighbors (A and E)

dx(y) = min{ c(x,v) + du()) }
over all neighbors v

du(D) = min{ c(u,A) + dA(D),
c(u,E) + de(D) }

To Understand, Let’s Start with Direct Neighbors of D

da(D) =1

dc(D) =4

B and C Announce Their Vectors to Their Neighbors, Which Allows A to Compute a Path to D

1

|

dA(D) = min{ 2 + dB(D),
1 + dc(D)}

|
4

Any Time a Distance Vector Changes, Each Node Propagates it to its Neighbors

de(D) = min {1 + dc(D),
4 + dg(D),
2 + duy(D)}

The Process Eventually Converges to the Shortest Path Distance to Each Destination

du(D) = min { 3 + dA(D),
2 +de(D)}

Similar to LS Routing, u can Directly Create its Forwarding Table by Directing Traffic to the
Best (whoever is advertising the lowest cost) Neighbor

DV Walkthrough

DV Walkthrough

Node X:

X Y 7

X 0 2 7

Y oo oo oo

Z oo oo oo
Node Y:

X Y 7

X oo oo oo

Yy 2 0 1

Z oo oo oo
Node Z:

X Y 7

X oo oo oo

Y oo oo oo

Zz 7 1 0

DV Walkthrough

Node X:

Node X;

ode:

Node Y:

ode Z:

Node Z:

DV Walkthrough

Node X:

Node X;

Node X;

ode:

ode:

Node Y:

ode Z:

ode Z:

Node Z:

DV

50

DV Solution

Node X:

Node X;

Node X;

50

ode:

ode:

Node Y:

50

50

N

ode Z:

ode Z:

Node Z:

50
1
0

50

x> N

Distance Vector Suffers From the “Count to Infinity” Problem

PR
=7

50

Count to Infinity

Node X:
X Y z
X 0 4 5 (Ignore X for simplicity)
Y 4 0 1
Z 5 1 0
NodeY:
X Y Z
X 0 4 5
Yy 6 0 1
Zz 5 1 0
Node Z:
X Y z
X 0 4 5
Y 4 0 1
Z 5 1 0

(Ignore X for simplicity)

Count to Infinity

Node X:

Node Y:

Node Y:

Node Z:

Node Z:

(Ignore X for simplicity)

Count to Infinity

Node X:

Node Y:

Node Y:

Node Y:

O - <t O
o ™~ X O W0
>N N >

(]

©

e}
— O N O
O o -t O
O 0 X O O
>N N >

()

§o)

e}

pd
— O N O
O o >t O
O n X O
> N >

(D)

o

o

pd

Count to Infinity
Node X: / \

X Y Z
X 0 4 5 (Ignore X for simplicity)
Yy 4 0 1 This will continue until they realize that 50
Z 5 1 0 (X <>Y) is cheaper
NodeY: Node Y: Node Y:
X Y 7Z X Y 7Z
X 0 4 5 X 0 4 5 X OK . I j
Y 6 0 1 Y 6 0 1 Yy 8 0 1 b
Zz 5 1 0 Z 5 1 O z 7 1 0
~Z
Node Z: Node Z: ode Z: 50
X Y 7Z X Y 7Z X Y 7
X 0 4 5 X 0 4 5 X 0 4 5
Y 4 0 1 Y 6 0 1 Y 6 0 1
Zz 5 1 0 z 7 1 0 z 7 1 0

DV Routing

“Bad News Travels Slowly,
Good News Travels Fast”

Distance Vector Algorithms

Pros Cons
e Simple to configure / e Slow to converge
maintain .
e Loops are possible
e Only need a local view of e Count to infinity
the world

e Wastes bandwidth -
constant updates even
when nothing changes

