Transport Layer

Transport

Network layer: communication between hosts

Transport layer: communication between processes

Transport

Network layer: communication between hosts

Transport layer: communication between processes

Muxing across many processes

Unit of data: segment

Transport

e Two principal transports: TCP and UDP

e TCP: Transmission Control Protocol
o reliable, in-order delivery
o congestion control
o flow control
o connection setup
e UDP: User Datagram Protocol
o unreliable, unordered delivery
o no-frills extension of “best-effort” IP
e services not available:

o delay guarantees
o bandwidth guarantees

Transport

reliable

routin
- delivery

How do you ensure reliable transport
on top of best-effort delivery?

Transport

In the Internet, reliability is ensured by
the end hosts, not by the network

Reliability is left to L4, the Transport Layer

Why?

Reliability is left to L4, the Transport Layer

goals

design

Keep the network simple, dumb

make it relatively “easy” to build and operate a network

Keep applications as network “unaware” as possible

a developer should focus on its app, not on the network

Implement reliability in-between, in the networking stack

relieve the burden from both the app and the network

Network stack - reliability in L4

Application

Transport reliable end-to-end delivery
Network global best-effort delivery
Link

Physical

Network stack - reliability in L4

Application

Transport reliable end-to-end delivery

Network global best-effort deIivery[IP is “best-effort” }
Link

Physical

Example: Alice and Bob

packet 1 packet 1
—— —
packet 2 packet 2
—_— —
packet 3 packet 3
—e —

Bob

Alice

IP packets can be lost or delayed

packet 1
—

packet 2 packet 2
—» —_—

packet 3
—

Alice Internet Bob

££7%

IP packets can get corrupted

payload: 001 payload: 101

e —
payload: 010 payload: 010
—_— e
payload: 101 payload: 42
—_— —_—t

Alice Internet Bob

££#%

IP packets can get reordered

packet 1 packet 3
_’ _»
packet 2 packet 2
—_ —_—
packet 3 packet 1
—_ —
Alice Internet Bob

Y914

IP packets can be duplicated

packet 1
—_

packet 2
P —

packet 3

Internet

Y914

packet 1
—p
packet 1
—_—
packet 1
—

packet 2
—_—

packet 3
e ——

Bob

The four goals of reliable transport

correctness ensure data is delivered, in order, and untouched
timeliness minimize time until data is transferred
efficiency optimal use of bandwidth

fairness play well with concurrent communications

The four goals of reliable transport

[correctness ensure data is delivered, in order, and untouched]
timeliness minimize time until data is transferred
efficiency optimal use of bandwidth

fairness play well with concurrent communications

Correctness is clean / easy with routing

sufficient and necessary condition
Theorem a global forwarding state is valid if and only if

there are no dead ends

no outgoing port defined in the table

there are no loops

packets going around the same set of nodes

Correctness is clean / easy with routing

sufficient and necessary condition

4 ’ N

Theorem

How can we come up with a similarly clean definition for
transport?

- /

there are no loops

packets going around the same set of nodes

Correctness in reliable transport

A reliable transport design is correct if...

#1 packets are delivered to the receiver

Consider that the network is partitioned

We cannot say a transport design is incorrect
if it doesn’t work in a partitioned network...

Correctness in reliable transport

A reliable transport design is correct if...

#2 packets are delivered to receiver if and only if

it was possible to deliver them

If the network is only available one instant in time,

only an oracle would know when to send

We cannot say a transport design is incorrect

if it doesn’t know the unknowable

Correctness in reliable transport

A reliable transport design is correct if...

#3 It resends a packet if and only if
the previous packet was lost or corrupted

Consider two cases

packet made it to the receiver and
all packets from receiver were dropped

packet is dropped on the way and
all packets from receiver were dropped

Correctness in reliable transport

A reliable transport design is correct if...

#3 It resends a packet if and only if
the previous packet was lost or corrupted

In both cases the sender has no feedback. How can

it know to re-send???
Consider two cas

packet made it to the receiver and
all packets from receiver were dropped

packet is dropped on the way and
all packets from receiver were dropped

Correctness in reliable transport

A reliable transport design is correct if...

#4 A packet is always resent if

the previous packet was lost or corrupted

A packet may be resent at other times

Correct!

A transport mechanism is only correct if and only if it resends all
dropped or corrupted packets

Sufficient algorithm will always keep trying
“if” to deliver undelivered packets
Necessary if it ever let a packet go undelivered
“only if” without resending it, it isn’t reliable

it is ok to give up after a while but

must announce it to the application

How do we achieve correctness and with what tradeoffs?

Design a correct, timely, efficient and fair transport mechanism

knowing that

packets can get lost —— let’s focus on these aspects first
corrupted
reordered
delayed
duplicated

How do we achieve correctness and with what tradeoffs?

Alice

for word in list:
send_packet(word);
set_timer();

upon timer going off:
if no ACK received:
send_packet(word);
reset_timer();
upon ACK:
pass;

Bob

receive_packet(p);
if check(p.payload) == p.checksum:
send_ack();

if word not delivered:
deliver_word(word);
else:
pass;

There is a clear tradeoff between timeliness and efficiency in the
selection of the timeout value

Alice Bob
for word in list: receive_packet(p);
send_packet(word); if check(p.payload) == p.checksum:
[set_timer();] send_ack();

[upon timer going off:] if word not delivered:

if no ACK received: deliver_word(word);

[send_packet(word);] else:

reset_timer();
upon ACK:
pass;

pass;

There is a clear tradeoff between timeliness and efficiency in the
selection of the timeout value

Alice Bob
for word in list: receive_packet(p);
send_packet(word); if check(p.payload) == p.checksum:
[set_timer();] send_ack();

[upon timer going off:] if word not delivered:

if no ACK received: deliver_word(word);

[send_packet(word);] else: 4
reset_timer(); PESS; . : :
This algorithm is known as “stop
upon ACK: and wait”
pass;

\

Stop and Wait demo

https://www?2.tkn.tu-berlin.de/teaching/rn/animations/gbn sr/

(for stop and wait, choose go back N and set the window size to 1)

https://www2.tkn.tu-berlin.de/teaching/rn/animations/gbn_sr/

Timeliness argues for small timers, efficiency for large timers

timeliness efficiency
small large
timers timers
risk risk

unnecessary retransmissions slow transmission

Even with small timers, stop and wait has terrible timeliness - one
packet per round trip time (RTT)

Alice Bob
_ Packet 1

=

4/P\c;‘(//

- Packet 2

5
—

/CK

Even with small timers, stop and wait has terrible timeliness - one
packet per round trip time (RTT)

Alice Bob
_ Packet 1

Ak —

£ How do we improve this? }

| — l

An obvious solution to improve timeliness is to send multiple
packets at the same time

add sequence number inside each packet

add buffers to the sender and receiver

sender store packets sent & not acknowledged

receiver store out-of-sequence packets received

An obvious solution to improve timeliness is to send multiple
packets at the same time

Alice Bob
o Packet 1
4 packets . packet 2 _—e
sent w/o \
ACKs = p<’J'Cket?3/*

Sending multiple packets improves timeliness, but it can also
overwhelm the receiver

overwhelmed

supercomputer smartphone

sends 1000 packet/s can process 10 packet/s

Sending multiple packets improves timeliness, but it can also
overwhelm the receiver

overwhelmed
supercomputer smartphone

4 N

How do we solve this problem?

| — — |

sends 1000 packet/s can process 10 packet/s

)

Flow control - sliding window

Sender keeps a list of the sequence # it can send

known as the sending window

Receiver also keeps a list of the acceptable sequence #

known as the receiving window

Sender and receiver negotiate the window size

sending window <= receiving window

