Transport Layer



Flow control - sliding window

Sender keeps a list of the sequence # it can send

known as the sending window

Receiver also keeps a list of the acceptable sequence #

known as the receiving window

Sender and receiver negotiate the window size

sending window <= receiving window



Flow control - sliding window

Example with a window composed of 4 packets

unACK’ed forbidden

| |
012 3[456 7|89

ACKed available




Flow control - sliding window

Window after sender receives ACK 4

unACK’ed forbidden

01 2 3 4|56 7 8

ACKed available




Flow control - sliding window

Window after sender receives ACK 4

unACK’ed forbidden

01 2 3 4|56 7 8

ACKed available

Timeliness of the window protocol depends on
the size of the sending window




Efficiency of the protocol depends on two factors

receiver behavior
feedback upon losses
How much information How does the sender

does the sender get? detect and react to losses?
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ACKing individual packets provides detailed feedback, but triggers
unnecessary retransmission upon losses

advantages disadvantages

know fate of each packet loss of an ACK packet
requires a retransmission

simple window algorithm causes unnecessary retransmission

W single-packet algorithms

not sensitive to reordering



Cumulative ACKs enables to recover from lost ACKs, but provides
coarse-grained information to the sender

approach ACK the highest sequence number for which

all the previous packets have been received

advantages recover from lost ACKs

disadvantages confused by reordering

incomplete information about which packets have arrived

causes unnecessary retransmission



Full Information Feedback prevents unnecessary retransmission,
but can induce a sizable overhead

approach List all packets that have been received

highest cumulative ACK, plus any additional packets

advantages complete information

resilient form of individual ACKs

disadvantages overhead (hence lowering efficiency)

e.g., when large gaps between received packets



Full Information Feedback prevents unnecessary retransmission,
but can induce a sizable overhead

approach List all packets that have been received

— Once again, Internet design is all about balancing tradeoffs.
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disadvantages overhead

e.g., when large gaps between received packets
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We’ve been talking about detecting loss using timeouts. That’s not
the only way

ACKS




With individual ACKs, missing packets (gaps) are implicit

Assume packet 5 is lost

but no other

ACK stream

——— sender can infer that 5 is missing
and resend 5 after k subsequent packets
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With full information, missing packets (gaps) are explicit

Assume packet 5 is lost

but no other

ACK stream up to 1
up to 2
up to 3
up to 4
up to 4, plus 6 ——  sender learns that 5 is missing

up to 4, plus 6—7 retransmits after k packets



With cumulative ACKs, missing packets are harder to know

Assume packet 5 is lost

. +la ~
but no other

ACK stream 1
2
3
4

4 sent when 6 arrives

4 sent when 7 arrives



Duplicate ACKs are a sign of isolated losses. Dealing with them is
trickier though.

situation Lack of ACK progress means that 5 hasn’t made it

Stream of ACKs means that (some) packets are delivered

Sender could trigger resend
upon receiving k duplicates ACKs

but what do you resend?

only 5 or 5 and everything after?



What about fairness?

Design a correct, timely, efficient and fair transport mechanism

knowing that

packets can get lost
corrupted
reordered
delayed
duplicated



When n entities are using our transport mechanism, we want a fair
allocation of the available bandwidth



Consider this simple network in which three hosts are sharing two links

B C
1Gbps 1Gbps
& / & 7/ & . /
flow 1
>
flow 2
>
flow 3
>

What is a fair allocation for the 3 flows?



An equal allocation is certainly “fair”, but what about the efficiency of
the network?

B
1Gbps 1Gbps

flow 1
500 Mbps =—>

flow 2
500 Mbps =—>

flow 3
500 Mbps >

Total traffic is 1.5 Gbps



Fairness and efficiency don’t always play along, here an unfair allocation
ends up more efficient

A B &
1Gbps 1Gbps

L W -/ C,.f/ [“/

flow 1
1 Gbps =—>

flow 2
1 Gbps =—>

flow 3
0 Mbps >

Total traffic is 2 Gbps!



Fairness and efficiency don’t always play along, here an unfair allocation
ends up more efficient
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Total traffic is 2 Gbps!



Equal-per-flow isn’t really fair as (A,C) crosses two links: it uses more
resources

B
1Gbps 1Gbps

& / & /

f
X
\

flow 1
500 Mbps =—>

flow 2
500 Mbps =—>

flow 3
500 Mbps >

Total traffic is 1.5 Gbps



With equal-per-flow, A ends up with 1 Gbps because it sends 2 flows,
while B ends up with 500 Mbps

1Gbps ; 1Gbps
& 7/ & / & /

flow 1
500 Mbps =—>

flow 2
500 Mbps =—>

flow 3
500 Mbps >

s that fair? Total traffic is 1.5 Gbps




Seeking an exact notion of fairness is not productive. What matters is to
avoid starvation.

equal-per-flow is good enough for this




Simply dividing the available bandwidth doesn’t work in practice since
flows can see different bottlenecks

A B
1Gbps 10 Gbps
& P & P & P
flow 1 (A,B)
>
flow 2 (B,C)
B
flow 3 (A,B)
| >

bottleneck link



Intuitively, we want to give users with "small” demands what they want,
and evenly distribute the rest

Max-min fair allocation is such that

the lowest demand is maximized

after the lowest demand has been satisfied,
the second lowest demand is maximized

after the second lowest demand has been satisfied,
the third lowest demand is maximized

and so on...



Max-min fair allocation can easily be computed

step 1

step 2

step 3

step 4

Start with all flows at rate 0

Increase the flows until there is
a new bottleneck in the network

Hold the fixed rate of the flows
that are bottlenecked

Go to step 2 for the remaining flows

Done!



Example

Demands: {2, 2.6, 4, 5}
Capacity: 10



Example

Consider the network on the right consisting
of 5 nodes (A to E). Each link has a maximal
bandwidth indicated in red. 7 flows (1 to 7)
are using the network at the same time. You
can assume that they have to send a lot of
traffic and will use whatever bandwidth they
will get. Apply the max-min fair allocation
algorithm to find a fair bandwidth allocation
for each flow.

For each flow, what is the bottleneck link?

A network with shared links and 7 flows.
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Max-min fair allocation can be approximated by slowly increasing W
until a loss is detected

Intuition Progressively increase max=receiving window
the sending window size

Whenever a loss is detected, signal of congestion
decrease the window size

Repeat



