
UDP and TCP

What do we need in the transport layer?
● Application layer

○ Communication for specific applications
○ e.g., HyperText Transfer Protocol (HTTP), File Transfer Protocol (FTP)

● Network layer
○ Global communication between hosts
○ Hides details of the link technology
○ e.g., Internet Protocol (IP)

What Problems Should Be Solved Here?
● Data delivering, to the correct application

○ IP just points towards next protocol
○ Transport needs to demultiplex incoming data (ports)

● Files or bytestreams abstractions for the applications
○ Network deals with packets
○ Transport layer needs to translate between them

● Reliable transfer (if needed)
● Not overloading the receiver
● Not overloading the network

What Is Needed to Address These?
● Demultiplexing: identifier for application process

○ Going from host-to-host (IP) to process-to-process
● Translating between bytestreams and packets:

○ Do segmentation and reassembly
● Reliability: ACKs and all that stuff
● Corruption: Checksum
● Not overloading receiver: “Flow Control”

○ Limit data in receiver’s buffer
● Not overloading network: “Congestion Control”

UDP: Datagram messaging service
UDP provides a connectionless, unreliable transport service

● No-frills extension of “best-effort” IP

● UDP provides only two services to the App layer
○ Multiplexing/Demultiplexing among processes
○ Discarding corrupted packets (optional)

TCP: Reliable, in-order delivery
TCP provides a connection-oriented, reliable, bytestream transport
service

● What UDP provides, plus:
○ Retransmission of lost and corrupted packets
○ Flow control (to not overflow receiver)
○ Congestion control (to not overload network)
○ “Connection” set-up & tear-down

Connections (or sessions)
Reliability requires keeping state

● Sender: packets sent but not ACKed, and related timers
● Receiver: noncontiguous packets

Each bytestream is called a connection or session

● Each with their own connection state
● State is in hosts, not network!

What transport protocols do not provide
● Delay and/or bandwidth guarantees

○ This cannot be offered by transport
○ Requires support at IP level (and let’s not go there)

● Sessions that survive change-of-IP-address
○ This is an artifact of current implementations
○ As we shall see....

Important Context: Sockets and Ports
● Sockets: an operating system abstraction

● Ports: a networking abstraction
○ This is not a port on a switch (which is an interface)
○ Think of it as a logical interface on a host

Sockets
● A socket is a software abstraction by which an application process

exchanges network messages with the (transport layer in the)
operating system
○ socketID = socket(..., socket.TYPE)
○ socketID.sendto(message, ...)
○ socketID.recvfrom(...)

● Two important types of sockets
○ UDP socket: TYPE is SOCK_DGRAM
○ TCP socket: TYPE is SOCK_STREAM

Ports
● Problem: which app (socket) gets which packets

● Solution: port as transport layer identifier (16 bits)
○ Packet carries source/destination port numbers in transport header

● OS stores mapping between sockets and ports
○ Port: in packets
○ Socket: in OS

More on Ports
● Separate 16-bit port address space for UDP, TCP

● “Well known” ports (0-1023)
○ Agreement on which services run on these ports
○ e.g., ssh:22, http:80
○ Client (app) knows appropriate port on server
○ Services can listen on well-known port

● Ephemeral ports (most 1024-65535):
○ Given to clients (at random)

● Host receives IP datagrams
○ Each datagram has source and destination IP address,
○ Each segment has source and destination port number

● Host uses IP addresses and port numbers to direct the segment to
appropriate socket

Multiplexing and Demultiplexing

● Lightweight communication between
processes
○ Avoid overhead and delays of ordered,

reliable delivery
○ Send messages to and receive them from a

socket

● UDP described in RFC 768 – (1980!)
○ IP plus port numbers to support

(de)multiplexing
○ Optional error checking on the packet

contents
■ (checksum field = 0 means “don’t verify

checksum”)

UDP: User Datagram Protocol

● Finer control over what data is sent and when
○ As soon as an application process writes into the socket
○ ... UDP will package the data and send the packet

● No delay for connection establishment
○ UDP just blasts away without any formal preliminaries
○ ... which avoids introducing any unnecessary delays

● No connection state
○ No allocation of buffers, sequence #s, timers …
○ ... making it easier to handle many active clients at once

● Small packet header overhead
○ UDP header is only 8 bytes

Why Would Anyone Use UDP?

● ACKs
○ Can’t be reliable without knowing whether data has arrived
○ TCP uses byte sequence numbers to identify payloads

● Checksums
○ Can’t be reliable without knowing whether data is corrupted
○ TCP does checksum over TCP and pseudoheader

● Timeouts and retransmissions
○ Can’t be reliable without retransmitting lost/corrupted data
○ TCP retransmits based on timeouts and duplicate ACKs
○ Timeout based on estimate of RTT

Basic Components of Reliability

● Sliding window flow control
○ Allow W contiguous bytes to be in flight

● Cumulative acknowledgements
○ Selective ACKs (full information) also supported

● Single timer set after each payload is ACKed
○ Timer is effectively for the “next expected payload”
○ When timer goes off, resend that payload and wait

■ And double timeout period
● Various tricks related to “fast retransmit”

○ Using duplicate ACKs to trigger retransmission

Other TCP Design Decisions

TCP Header

... Provided Using TCP “Segments”

TCP Segment
● IP packet

○ No bigger than Maximum Transmission Unit (MTU)
○ E.g., up to 1500 bytes with Ethernet

● TCP packet
○ IP packet with a TCP header and data inside
○ TCP header >= 20 bytes long

● TCP segment
○ No more than Maximum Segment Size (MSS) bytes
○ E.g., up to 1460 consecutive bytes from the stream
○ MSS = MTU – (IP header) – (TCP header)

Sequence Numbers

Sequence Numbers

ACKing and Sequence Numbers
● Sender sends packet

○ Data starts with sequence number X
○ Packet contains B bytes

■ X, X+1, X+2,X+B-1
● Upon receipt of packet, receiver sends an ACK

○ If all data prior to X already received:
■ ACK acknowledges X+B (because that is next expected byte)

○ If highest contiguous byte received is smaller value Y
■ ACK acknowledges Y+1
■ Even if this has been ACKed before

TCP Header

Sliding Window Flow Control
● Advertised Window: W

○ Can send W bytes beyond the next expected byte

● Receiver uses W to prevent sender from overflowing buffer

● Limits number of bytes sender can have in flight

Advertised Window Limits Rate
Sender can send no faster than W/RTT bytes/sec

Receiver only advertises more space when it has consumed old
arriving data

In original TCP design, that was the sole protocol mechanism
controlling sender’s rate

Establishing a TCP Connection

TCP Header

Handshake step 1: A’s initial SYN packet

Handshake step 2: B’s SYN-ACK packet

Handshake step 3: A’s ACK of the SYN-ACK packet

Timing Diagram: 3-Way Handshaking

What if the SYN Packet Gets Lost?
● Suppose the SYN packet gets lost

○ Packet is lost inside the network, or:
○ Server discards the packet (e.g., listen queue is full)

● Eventually, no SYN-ACK arrives
○ Sender sets a timer and waits for the SYN-ACK
○ ... and retransmits the SYN if needed

● How should the TCP sender set the timer?
○ Sender has no idea how far away the receiver is
○ Hard to guess a reasonable length of time to wait
○ SHOULD (RFCs 1122 & 2988) use default of 3 seconds

■ Other implementations instead use 6 seconds

