TCP Connection Teardown



Normal Termination, One Side At A Time
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Finish (FIN) to close and receive remaining bytes
« FIN occupies one octet in the sequence space

Other host ack’s the octet to confirm

Closes A's side of the connection, but not B’'s

» Until B likewise sends a FIN
»  Which A then acks



Normal Termination, Both Together

Same as before, but B sets FIN with their ack of A's FIN
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Abrupt Termination
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A sends a RESET (RST) to B

» E.g., because app. process on A crashed
That’s it

« B does not ack the RST

« Thus, RST is not delivered reliably

» And: any data in flight is lost
« But: if B sends anything more, will elicit another RST



TCP State Transitions
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Reliability: TGP Retransmissions

e Reliability requires retransmitting lost data
e Involves setting timer and retransmitting on timeout

e TCP resets timer whenever new data is ACKed
o Retx of packet containing “next byte” when timer goes off



Example

e Arriving ACK expects 100
e Sender sends packets 100, 200, 300, 400, 500

o Timer set for 100

e Arriving ACK expects 300
o Timer set for 300

e Timer goes off
o Packet 300 is resent

e Arriving ACK expects 600

o Packet 600 sent
o Timer set for 600



Setting the Timeout Value
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Timeout too long = inefficient Timeout too short -
duplicate packets



RTT Estimation

Use exponential averaging of RTT samples

SampleRTT= AckRevdTime- SendPacketTime
EstimatedRTT = o x EstimatedRTT + (1-a.) x SampleRTT
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Exponential Averaging Example

EstimatedRTT = a*EstimatedRTT + (1 — a)*SampleRTT

RTT

Assume RTT is constant > SampleRTT = RTT

EstimatedRTT (a.= 0.5)

time



Problem: Ambiguous Measurements

How do we differentiate between the real ACK, and ACK of the
retransmitted packet?
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Karn/Partridge Algorithm

e Measure SampleRTT only for original transmissions
o Once a segment has been retransmitted, do not use it for any further
measurements
o Computes EstimatedRTT using a = 0.875

e Timeoutvalue (RTO) =2 x EstimatedRTT

e Use exponential backoff for repeated retransmissions
o Every time RTO timer expires, set RTO « 2:RTO
m  (Upto maximum = 60 sec)
o Every time new measurement comes in (= successful original transmission),
collapse RTO back to 2 x EstimatedRTT



Reality

e |Implementations often use a coarse-grained timer
o 500 msec is typical

e So what?

o Above algorithms are largely irrelevant
o Incurring a timeout is expensive

e So we rely on duplicate ACKs



Loss with Cumulative ACKs

e Sender sends packets with 100B and segnos.:
o 100, 200, 300, 400, 500, 600, 700, 800, 900, ...

e Assume the fifth packet (segno 500) is lost, but no others

e Stream of ACKs will be:
o 200, 300, 400, 500, 500, 500, 500,...



Loss with Cumulative ACKs

e “Duplicate ACKs" are a sign of an isolated loss

o The lack of ACK progress means 500 hasn't been delivered
o Stream of ACKs means some packets are being delivered

e Therefore, could trigger resend upon receiving k duplicate ACKs
o TCP uses k=3



Congestion Control



Because of traffic burstiness and lack of BW reservation,
congestion is inevitable

If many packets arrive within
a short period of time
the node cannot keep up anymore



Congestion is not a new problem

e The Internet almost died of congestion in 1986
o throughput collapsed from 32 Kbps to... 40 bps

e Van Jacobson saved us with Congestion Control
o his solution went right into BSD

e Recent resurgence of research interest after brief lag
o new methods (ML), context (Data centers), requirements



Congestion is not a new problem

e The Internet almost died of congestion in 1986
o throughput collapsed from 32 Kbps to... 40 bps

e Van Jacobson saved us with Congestion Control
o his solution went right into BSD

e Recent resurgence of research interest after brief lag
o new methods (ML), context (Data centers), requirements



Congestion is not a new problem

original
behavior

meaning

net effect

On connection,
nodes send full window of packets

Upon timer expiration,
retransmit packet immediately

sending rate only limited by flow control

window-sized burst of packets



Congestion collapse

Knee point after which
throughput increases  slowly
delay increases  quickly
Cliff point after which
throughput decreases quickly
delay tends to  infinity
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Congestion collapse
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