TCP Connection Teardown

Normal Termination, One Side At A Time

B
v X
2 9 s/ \z z \m &
S %TQ“'/\% 5%2%’
‘ﬁ [BN BN J
A Y

time

Finish (FIN) to close and receive remaining bytes
« FIN occupies one octet in the sequence space

Other host ack’s the octet to confirm

Closes A's side of the connection, but not B’'s

» Until B likewise sends a FIN
» Which A then acks

Normal Termination, Both Together

Same as before, but B sets FIN with their ack of A's FIN

% 2
é%s x &5
27 & e
7~ 7~

Abrupt Termination

L.a%
RST
ered
RST

A sends a RESET (RST) to B

» E.g., because app. process on A crashed
That’s it

« B does not ack the RST

« Thus, RST is not delivered reliably

» And: any data in flight is lost
« But: if B sends anything more, will elicit another RST

TCP State Transitions

CLOSED - ,____:\m
e Active open /SYM
Passive open Close \

Close %, \

LISTEN
U
)

|
SYN/SYN + ACK/ \ Send SYN

SYN_RCVD “_I —— SN Ak — SYN_SENT

ACK N\ /TSN + ACK/ACK Data, ACK

L
[staausreod exchanges
Close/FIN ESTABLISHED
J o are in here

Close/FIN -~ . FIN/ACK

FIN_WAIT_1 28 CLOSE_WAIT
ACK \ Close/FIN
FIN_WAIT_2 CLOSING LAST_ACK
| i
__ FIN/ACK ke

TIME_WAIT

CLOSED

Reliability: TGP Retransmissions

e Reliability requires retransmitting lost data
e Involves setting timer and retransmitting on timeout

e TCP resets timer whenever new data is ACKed
o Retx of packet containing “next byte” when timer goes off

Example

e Arriving ACK expects 100
e Sender sends packets 100, 200, 300, 400, 500

o Timer set for 100

e Arriving ACK expects 300
o Timer set for 300

e Timer goes off
o Packet 300 is resent

e Arriving ACK expects 600

o Packet 600 sent
o Timer set for 600

Setting the Timeout Value
RTTY RTIT l\ 1

\

Timeout too long = inefficient Timeout too short -
duplicate packets

RTT Estimation

Use exponential averaging of RTT samples

SampleRTT= AckRevdTime- SendPacketTime
EstimatedRTT = o x EstimatedRTT + (1-a.) x SampleRTT

O<a=l
N SampleRTT
>
Y

Exponential Averaging Example

EstimatedRTT = a*EstimatedRTT + (1 — a)*SampleRTT

RTT

Assume RTT is constant > SampleRTT = RTT

EstimatedRTT (a.= 0.5)

time

Problem: Ambiguous Measurements

How do we differentiate between the real ACK, and ACK of the
retransmitted packet?

3.
X Q
g
#
g
@
3
3
s
SampleRTT

SampleRTT
@

Karn/Partridge Algorithm

e Measure SampleRTT only for original transmissions
o Once a segment has been retransmitted, do not use it for any further
measurements
o Computes EstimatedRTT using a = 0.875

e Timeoutvalue (RTO) =2 x EstimatedRTT

e Use exponential backoff for repeated retransmissions
o Every time RTO timer expires, set RTO « 2:RTO
m (Upto maximum = 60 sec)
o Every time new measurement comes in (= successful original transmission),
collapse RTO back to 2 x EstimatedRTT

Reality

e |Implementations often use a coarse-grained timer
o 500 msec is typical

e So what?

o Above algorithms are largely irrelevant
o Incurring a timeout is expensive

e So we rely on duplicate ACKs

Loss with Cumulative ACKs

e Sender sends packets with 100B and segnos.:
o 100, 200, 300, 400, 500, 600, 700, 800, 900, ...

e Assume the fifth packet (segno 500) is lost, but no others

e Stream of ACKs will be:
o 200, 300, 400, 500, 500, 500, 500,...

Loss with Cumulative ACKs

e “Duplicate ACKs" are a sign of an isolated loss

o The lack of ACK progress means 500 hasn't been delivered
o Stream of ACKs means some packets are being delivered

e Therefore, could trigger resend upon receiving k duplicate ACKs
o TCP uses k=3

Congestion Control

Because of traffic burstiness and lack of BW reservation,
congestion is inevitable

If many packets arrive within
a short period of time
the node cannot keep up anymore

Congestion is not a new problem

e The Internet almost died of congestion in 1986
o throughput collapsed from 32 Kbps to... 40 bps

e Van Jacobson saved us with Congestion Control
o his solution went right into BSD

e Recent resurgence of research interest after brief lag
o new methods (ML), context (Data centers), requirements

Congestion is not a new problem

e The Internet almost died of congestion in 1986
o throughput collapsed from 32 Kbps to... 40 bps

e Van Jacobson saved us with Congestion Control
o his solution went right into BSD

e Recent resurgence of research interest after brief lag
o new methods (ML), context (Data centers), requirements

Congestion is not a new problem

original
behavior

meaning

net effect

On connection,
nodes send full window of packets

Upon timer expiration,
retransmit packet immediately

sending rate only limited by flow control

window-sized burst of packets

Congestion collapse

Knee point after which
throughput increases slowly
delay increases quickly
Cliff point after which
throughput decreases quickly
delay tends to infinity

Throughput

Delay

congestion
collapse

Load

Congestion collapse

o
~

60

50
T

Packet Sequence Number (KB)
30 40

10
o 1*9:.__:1_.__ e _ﬂ 1

aL-

Send Time (sec)

= 5
6

=ir

