
TCP uses AIMD for congestion avoidance

The congestion window of a TCP session typically undergoes
multiple cycles of slow-start/AIMD

Going back all the way back to 0 upon timeout completely destroys
throughput

Detecting losses can be done using ACKs or timeouts, the two
signal differ in their degree of severity

TCP automatically resends a segment after receiving 3 duplicates
ACKs for it
Known as fast retransmit

Timeouts are slow (1 second is fastest timeout on many TCPs)

When packet is lost, receiver still ACKs last in-order packet

Use 3 duplicate ACKs to indicate a loss; detect losses quickly

After a fast retransmit, TCP switches back to AIMD,
without going all way the back to 0
Known as fast recovery

Goal: avoid stalling after loss

If there are still ACKs coming in, then no need for slow start If a packet
has made it through -> we can send another one

Divide cwnd by 2 after fast retransmit

Increment cwnd by 1 full pkt for each additional duplicate ACK

More sophisticated TCP

TCP congestion control

Congestion control makes TCP throughput look like a “sawtooth”

Questions

When the retransmission timer expires at the sender, the value of
ssthreshold is set to what?

Where is the CWND parameter taken from?

Questions

When the retransmission timer expires at the sender, the value of
ssthreshold is set to what?
½ the current CWND

Where is the CWND parameter taken from?
NOT a header, calculated solely by the sender

Questions

Identify time intervals where TCP slow-start is
operating.

Identify time intervals where TCP
congestion-avoidance is operating

After the 16th transmission round, is segment loss
detected by a triple duplicate ACK or by a timeout
event?

Questions

Identify time intervals where TCP slow-start is operating.
[1,6] and [23,26]

Identify time intervals where TCP congestion-avoidance is
operating
[6,16] and [17,22]

After the 16th transmission round, is segment loss detected
by a triple duplicate ACK or by a timeout event?
At the 16th transmission round, packet loss is recognized
by a triple duplicate ACK. If there was a timeout, the
congestion window size would have dropped to 1.

Questions

After the 22nd transmission round, is
segment loss detected by a triple
duplicate ACK or by a timeout event?

What is the ssthreshold value at the
first transmission round?

Questions

After the 22nd transmission round, is segment
loss detected by a triple duplicate ACK or by a
timeout event?
After the 22nd transmission round, segment
loss is detected due to timeout, and hence the
congestion window size is set to 1.

What is the ssthreshold value at the first
transmission round?
The threshold is initially 32, since it is at this
window size that slow start stops and
congestion avoidance begins.

Questions

What is the ssthreshold value at the 18th
transmission round?

 What is the ssthreshold value at the 24th
transmission round?

What will be the values of CWND and
ssthreshold if packet loss is detected after the
26th round by receipt of triple duplicate ACKs?

Wireshark example

Is there a better way than AIMD to probe for usable bandwidth?
TCP CUBIC

Insight/intuition:

● Wmax: sending rate at which congestion loss was detected
● congestion state of bottleneck link probably (?) hasn’t changed much
● after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then

approach Wmax more slowly

TCP CUBIC
K: point in time when TCP window size will reach Wmax

● K itself is tuneable

increase W as a function of the cube of the distance
between current time and K

● larger increases when further away from K
● smaller increases (cautious) when nearer K

TCP CUBIC default in Linux, most popular TCP for
popular Web servers

TCP and congested bottleneck links
TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs at
some router’s output: the bottleneck link

understanding congestion: useful to focus on congested bottleneck link

Goal: “keep the end-to-end pipe just full, but not fuller”

Delay based congestion control
Goal: “keep the end-to-end pipe just full, but not fuller”

Delay based congestion control
congestion control without inducing/forcing loss

maximizing throughput (“keeping the just pipe full… ”) while keeping delay low
(“…but not fuller”)

a number of deployed TCPs take a delay-based approach

● BBR deployed on Google’s (internal) backbone network

TCP makes assumptions
Will it ever actually fill the available bandwidth?

Most TCP flavors base their congestion control entirely on loss - can you think
of any issue with that?

TCP over “long, fat pipes”
example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput

throughput in terms of segment loss probability, L [Mathis 1997]:

to achieve 10 Gbps throughput, need a loss rate of L = 2·10-10 YIKES

versions of TCP for long, high-speed scenarios

Is TCP Fair?

Is TCP Fair?
A: Yes, under idealized assumptions:

● same RTT
● fixed number of sessions

Is TCP Fair?
Fairness and UDP

● multimedia apps often do not use
TCP
○ do not want rate throttled by

congestion control
● instead use UDP:

○ send audio/video at constant rate,
tolerate packet loss

● there is no “Internet police” policing
use of congestion control

Fairness, parallel TCP connections

● application can open multiple parallel
connections between two hosts

● web browsers do this , e.g., link of rate R
with 9 existing connections:
○ new app asks for 1 TCP, gets rate R/10
○ new app asks for 11 TCPs, gets R/2

Is TCP Ideal?
● TCP adds a lot of complexity in exchange for reliable, in-order byte delivery

● UDP is much faster / simpler
○ If you aren’t dealing with a lot of loss, UDP could be better

● TCP flows have a fundamental feature that must be considered / engineered
around:
○ Head of line (HOL) blocking

■ One lost packet in the TCP stream makes all others wait until that packet is
re-transmitted and received.

