
TCP uses AIMD for congestion avoidance



The congestion window of a TCP session typically undergoes 
multiple cycles of slow-start/AIMD



Going back all the way back to 0 upon timeout completely destroys 
throughput



Detecting losses can be done using ACKs or timeouts, the two 
signal differ in their degree of severity



TCP automatically resends a segment after receiving 3 duplicates 
ACKs for it
Known as fast retransmit

Timeouts are slow (1 second is fastest timeout on many TCPs)

When packet is lost, receiver still ACKs last in-order packet

Use 3 duplicate ACKs to indicate a loss; detect losses quickly 



After a fast retransmit, TCP switches back to AIMD,
without going all way the back to 0
Known as fast recovery

Goal: avoid stalling after loss

If there are still ACKs coming in, then no need for slow start  If a packet 
has made it through -> we can send another one  

Divide cwnd by 2 after fast retransmit

Increment cwnd by 1 full pkt for each additional duplicate ACK



More sophisticated TCP



TCP congestion control



Congestion control makes TCP throughput look like a “sawtooth”



Questions

When the retransmission timer expires at the sender, the value of 
ssthreshold is set to what?

Where is the CWND parameter taken from?



Questions

When the retransmission timer expires at the sender, the value of 
ssthreshold is set to what?
½ the current CWND

Where is the CWND parameter taken from?
NOT a header, calculated solely by the sender



Questions

Identify time intervals where TCP slow-start is 
operating.

Identify time intervals where TCP 
congestion-avoidance is operating

After the 16th transmission round, is segment loss 
detected by a triple duplicate ACK or by a timeout 
event?



Questions

Identify time intervals where TCP slow-start is operating.
[1,6] and [23,26]

Identify time intervals where TCP congestion-avoidance is 
operating
[6,16] and [17,22]

After the 16th transmission round, is segment loss detected 
by a triple duplicate ACK or by a timeout event?
At the 16th transmission round, packet loss is recognized 
by a triple duplicate ACK. If there was a timeout, the 
congestion window size would have dropped to 1.



Questions

After the 22nd transmission round, is 
segment loss detected by a triple 
duplicate ACK or by a timeout event?

What is the ssthreshold value at the 
first transmission round?



Questions

After the 22nd transmission round, is segment 
loss detected by a triple duplicate ACK or by a 
timeout event?
After the 22nd transmission round, segment 
loss is detected due to timeout, and hence the 
congestion window size is set to 1.

What is the ssthreshold value at the first 
transmission round?
The threshold is initially 32, since it is at this 
window size that slow start stops and 
congestion avoidance begins.



Questions

What is the ssthreshold value at the 18th 
transmission round?

 What is the ssthreshold value at the 24th 
transmission round?

What will be the values of CWND and 
ssthreshold if packet loss is detected after the 
26th round by receipt of triple duplicate ACKs?



Wireshark example



Is there a better way than AIMD to probe for usable bandwidth?
TCP CUBIC

Insight/intuition: 

● Wmax: sending rate at which congestion loss was detected
● congestion state of bottleneck link probably (?) hasn’t changed much
● after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then 

approach Wmax more slowly



TCP CUBIC
K: point in time when TCP window size will reach Wmax

● K itself is tuneable

increase W as a function of the cube of the distance 
between current time  and K

● larger increases when further away from K
● smaller increases (cautious) when nearer K

TCP CUBIC default in Linux, most popular TCP for 
popular Web servers



TCP and congested bottleneck links
TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs at 
some router’s output: the bottleneck link

understanding congestion: useful to focus on congested bottleneck link

Goal: “keep the end-to-end pipe just full, but not fuller”



Delay based congestion control
Goal: “keep the end-to-end pipe just full, but not fuller”



Delay based congestion control
congestion control without inducing/forcing loss

maximizing throughput (“keeping the just pipe full… ”) while keeping delay low 
(“…but not fuller”)

a number of deployed TCPs take a delay-based approach

● BBR deployed on Google’s (internal) backbone network



TCP makes assumptions
Will it ever actually fill the available bandwidth?

Most TCP flavors base their congestion control entirely on loss - can you think 
of any issue with that?



TCP over “long, fat pipes”
example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput

throughput in terms of segment loss probability, L [Mathis 1997]:

to achieve 10 Gbps throughput, need a loss rate of L = 2·10-10      YIKES   

versions of TCP for long, high-speed scenarios



Is TCP Fair?



Is TCP Fair?
A: Yes, under idealized assumptions:

● same RTT
● fixed number of sessions 



Is TCP Fair?
Fairness and UDP

● multimedia apps often do not use 
TCP
○ do not want rate throttled by 

congestion control
● instead use UDP:

○ send audio/video at constant rate, 
tolerate packet loss

● there is no “Internet police” policing 
use of congestion control

Fairness, parallel TCP connections

● application can open multiple parallel 
connections between two hosts

● web browsers do this , e.g., link of rate R 
with 9 existing connections:
○ new app asks for 1 TCP, gets rate R/10
○ new app asks for 11 TCPs, gets R/2 



Is TCP Ideal?
● TCP adds a lot of complexity in exchange for reliable, in-order byte delivery

● UDP is much faster / simpler
○ If you aren’t dealing with a lot of loss, UDP could be better

● TCP flows have a fundamental feature that must be considered / engineered 
around:
○ Head of line (HOL) blocking

■ One lost packet in the TCP stream makes all others wait until that packet is 
re-transmitted and received. 


