The Web

The Web as we know it was founded in ~1990, by Tim Berners-Lee,
physicist at CERN

His goal:

provide distributed access to data

The World Wide Web (WWW):

a distributed database of “pages”
linked together via the
Hypertext Transport Protocol (HTTP)

Tim Berners-Lee Photo: CERN

Why was the web so successful?

e Had networks in mind from the beginning

e What made it successful in the beginning is what makes it
successful now

©)

©)
©)
©)

It gives a lot of leeway for how websites work (didn't over-specify)
Not tied to any one underlying system

No central authority — you can just add your own server/content
The ability to quickly navigate information from different sources

The web: basic requirements

e Something to represent content with links: HTML
e (lient program to access/navigate/display content (e.g. HTML): Web browser

e A way to reference content: URLs
o It's how you link/embed content to/in other content across a network
o First general “handle” for arbitrary Internet content
o Not just naming a host/processes (address/port)

e Something to host content: Web servers

e A protocol to get content from server to client: HTTP
o Turns web URLs into TCP connections

Web basics

e HTML: HyperText Markup Language - Represent content with links
e Browser: Access/navigate/display content
e Provide integrated interface to scattered information

Embed another resource Link to another resource

@ A web page! X +
<html>
<head> & - C (® NotSecure | test.cs168.i0
itle>A wely page!</title>
</head> Finally, a way to share memes!

<body>
<p>Finally, a way\ to share
memes!
< / [
<img src=“

</body>
</html>

- \

Vel H
COMPUTER SCIENCE~-

Web basics: URL syntax

scheme: //host[:port]/path/resource

scheme
host
port
path

resource

Typically a protocol: http, ftp, https, smtp, rtsp, etc.

DNS hostname or IP address

Defaults to protocol’s standard port e.g. http: 80 https: 443
Traditionally reflecting file system

|dentifies the desired resource (traditionally a file)

The web: basic requirements

e Something to represent content with links: HTML
e (lient program to access/navigate/display content (e.g. HTML): Web browser

e A way to reference content: URLs
o It's how you link/embed content to/in other content across a network
o First general “handle” for arbitrary Internet content
o Not just naming a host/processes (address/port)

e Something to host content: Web servers

e A protocol to get content from server to client: HTTP
o Turns web URLs into TCP connections

HyperText Transfer Protocol (HTTP)

e Focusing our discussion on common/current versions of HTTP:
o HTTP 1.0 (1996) and HTTP 1.1 (1997)
o These are (significant) outgrowth of original “HTTP 0.9”

e HTTP 2 published in 2015
o Largely based on work by Google
o As of 2020, 44% of websites use it
o Significant departure; largely performance optimizations

e HTTP 3 forthcoming standard
o Largely based on work by Google
o As of 2020, 5% of websites use it (more or less Google and Facebook?)
o Significant departure; largely performance optimizations

HyperText Transfer Protocol (HTTP)

e (Simple HTTP 1.0 “GET" request)

e C(lient creates TCP connection (port 80)
e C(lient sends request

e Server sends response packets
e C(Client ACKs them

e Server closes connection

Client

Establish
connection
Client
request

TCp syn
TCP syn + ack :
cp ack
H N
TTPRe st
HTTP Response

More Responsé ___—

End of R'esponse _—
— e

W
X

Pﬁn

Server

* Response

| tcPack

Close
connection

HTITP client requests

method <sp> URL <sp> version

header field name: value

header field name: value

<cr><I|f>

<cr><If>

<cr><If>

<cr><If>

body

HTITP client requests

header field name: value <cr><If>
’ header field name: value <cr><If>
’ <cr><If>

body

HTTP client requests

method GET
HEAD
POST
URL

version

return resource
return headers only

send data to server (forms)
relative to server

1:0;: 1.15:2.0

HTITP client requests

method <sp> URL <sp> version <cr><If>

ju i[header field name: value] <cr><If> ‘
‘[header field name: value] <cr><If>
‘ <cr><If> ‘

body

Request headers are variable length but still human readable

Authorization info

Acceptable document types/encoding
From

Host

If-Modified-Since

Referrer

User Agent

Request headers are variable length but still human readable

Authorization info
Acceptable document types/encoding

From

— ‘ |

Why would you need this? You're already connected?

Request headers are variable length but still human readable

Authorization info
Acceptable document types/encoding
From (user email)

Why would you need this? You're already connected?)

Remember our DNS discussion about multiple names mapping to
a single IP address - known as virtual hosting. More on this when
we discuss CDNs)

~——— Bl -

HTTP server responses

HTTP version|<sp> [status|<sp>|phrase| <cr><If>

header field name: value <cr><If>
header field name: value <cr><If>
<cr><If>

body

HTTP server responses

3 digit response code reason phrase
Status 1XX informational
2XX success 200 OK
3XX redirection 301 Moved Permanently
303 Moved Temporarily
304 Not Modified
4XX client error 404 Not Found

5XX server error 505 Not Supported

HTTP server responses

HTTP version <sp> status <sp> phrase <cr><|f>

responsec [header field name: value] <cr><If>
[header field name: value] <cr><If>
<cr><If> ‘

body

Like request headers, response headers are of variable lengths and
human-readable

Location

Allow

Content encoding (¢
Content-Length
Content-Type
Expires

Last-Modified (ca

HTTP is a stateless protocol, meaning each request is treated
independently

advantages disadvantages

server-side scalability some applications need state!

(shopping cart, user profiles, tracking)

failure handling is trivial

How can you maintain state in a stateless protocol?

HTTP makes the client maintain the state. This is what cookies are for

client stores small state

on behalf of the server X

client sends state

in all future requests to X

can provide authentication

Demo

telnet google.com 80

Request GET/HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK

Date: Sat, 22 Apr 2023 19:32:03 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=IS0-8859-1

Content-Security-Policy-Report-Only: object-src 'none';base-uri 'self';script-src 'nonce-t5Ensfszo5Yk1zA9MUbD3Q' 'strict-dynamic' 'report-sample' 'unsafe-eval' 'unsafe-inline' https: http:;report-uri https://csp.withgoogle.com/csp/gws/othe
r-hp

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."

Server: gws

X-XSS-Protection: @

X-Frame-Options: SAMEORIGIN

Set-Cookie: 1P_JAR=2023-04-22-19; expires=Mon, 22-May-2023 19:32:03 GMT; path=/; domain=.google.com; Secure

Set-Cookie: AEC=AUEFqZeJq@yVN3iWoiTycalgqcIUISPeiKcoELP1P5xF7_x7Q0nJ2J@V; expires=Thu, 19-Oct-2023 19:32:@3 GMT; path=/; domain=.google.com; Secure; HttpOnly; SameSite=lax

Set-Cookie: NID=511=1ABJQPay9XTAFpI@pulLY7rmzd_DxEUou7p7vy8Wrb9T8EQcBSCigKfszJdVqlk@b8mHNVoxmeGIkHVKH1kNCm3JFXimSyUnbeRVy93rMVSrspnbLwlpamaceGZ_GPItghxhkzcOjZXFXcfg-cYlt-RFTMPo4il3gG0Ox_mi_D6g; expires=Sun, 22-Oct-2023 19:32:83 GMT; path=/;
domain=.google.com; HttpOnly

Accept-Ranges: none

Vary: Accept-Encoding

Transfer-Encoding: chunked

Demo

telnet google.com 80

Request GET/HTTP/1.1
Host:

Browser will relay this value in
- subsequent requests

HTTP/1.1 200 OK

Date: Sat, 22 Apr 2023 19:32:03 GMT
Expires: -1

Cache-Control: private, max-age=0
Content-Type: text/html; charset=IS0;2559-1
Content-Security-Policy-Report-Oniy: object-src 'none';base-uri 'self';script-src 'nonce-t5Ensfszo5Yk1zA9MUbD3Q' 'strict-dynamic' 'report-sample' 'unsafe-eval' 'unsafe-inline' https: http:;report-uri https://csp.withgoogle.com/csp/gws/othe
r-hp

P3P: CP="This is not a P387policy! See g.co/p3phelp for more info."

Server: gws

X-XSS-Protectiory, &

X-Frame-Optiox JAMEORIGIN

Set-Cookie: 1P_JAR=2023-04-22-19; expires=Mon, 22-May-2023 19:32:03 GMT; path=/; domain=.google.com; Secure

Set-Cookie: AEC=AUEFqZeJq@yVN3iWoiTycalgqcIUISPeiKcoELP1P5xF7_x7Q0nJ2J@V; expires=Thu, 19-Oct-2023 19:32:@3 GMT; path=/; domain=.google.com; Secure; HttpOnly; SameSite=lax

Set-Cookie: NID=511=1ABJQPay9XTAFpI@pulLY7rmzd_DxEUou7p7vy8Wrb9T8EQcBSCigKfszJdVqlk@b8mHNVoxmeGIkHVKH1kNCm3JFXimSyUnbeRVy93rMVSrspnbLwlpamaceGZ_GPItghxhkzcOjZXFXcfg-cYlt-RFTMPo4il3gG0Ox_mi_D6g; expires=Sun, 22-Oct-2023 19:32:83 GMT; path=/;
domain=.google.com; HttpOnly

Accept-Ranges: none

Vary: Accept-Encoding

Transfer-Encoding: chunked

What now? What about performance? Goals depend on who you're

talking about

wish

User

~z

“~> @&

- ~,

\3/

fast downloads

high availability

Improve HTTP to
compensate for
TCP weakspots

Network
operators

no overload

Content provider

happy users

cost-effective
infrastructure

Caching and Replication

