
What now? What about performance? Goals depend on who you’re 
talking about



What now? What about performance? Goals depend on who you’re 
talking about



Recall TCP forces a client to open a connection before exchanging any 
data



Nearly all websites have multiple objects, naive HTTP opens one TCP 
connection for each...



One solution to that problem is to use multiple TCP connections in 
parallel



Another solution is to use persistent connections across multiple 
requests (the default in HTTP/1.1)



Yet another solution is to pipeline requests & replies asynchronously, 
on one connection
● batch requests and 

responses to reduce the 
number of packets

● multiple requests can be 
packed into one TCP 
segment



Yet another solution is to pipeline requests & replies asynchronously, 
on one connection
● Pipelined connections aren’t actually 

used
● But they seemed like a huge win
● What happened?!

○ .. primarily two reasons
● Reason 1: Bugs

○ One manifestation: images on page 
are swapped!

○ Often blamed on proxy servers
○ My guess: bad adaptation of 

multithreaded non-pipelined version
● Reason 2: Head-of-line blocking



The average webpage size nowadays is as large as the original DOOM...



Top web sites have decreased in size though because they care about 
TCP performance



What now? What about performance? Goals depend on who you’re 
talking about



Caching leverages the fact that highly popular content largely 
overlaps



HTTP Caching

No caching

● Many clients transfer same information

● Generates unnecessary server load

● Generates unnecessary network load

● Clients experience unnecessary latency



Yet, a significant portion of the HTTP objects are “uncachable"



To limit staleness of cached objects, HTTP enables a client to validate 
cached objects
Server hints when an object expires (kind of TTL) as well as the last modified date of an 
object

Client conditionally requests a resource using the “if-modified-since” header in the HTTP 
request

Server compares this against “last modified” time of the resource and returns:

● Not Modified if the resource has not changed 
● OK with the latest version



Caching can be (and is) performed at different locations



HTTP Caching

Reverse proxies

● Cache documents close to servers 

● Reduces server load

● Typically done by content provider



HTTP Caching



Content Delivery Networks
● Replication is a huge benefit to availability, scalability, and 

performance
○ We saw this with DNS
○ Can spread the load
○ Places content closer to clients (less latency)

○ Caching is a form of opportunistic replication
■ .. but what if a given organization doesn’t have a forward proxy?
■ .. what if content provider and wants its content always replicated?

■ Idea: Caching and replication as a service — “CDNs 1.0”



CDNs “1.0”
● Large-scale distributed storage infrastructure

○ (Usually) administered by one entity
○ e.g., Akamai has 275,000+ servers in 136 countries

● Any server can host content for the many clients of the CDN 
(virtual hosting)

● How does content provider get its data onto Akamai’s servers?
● Two major ways

○ Pull
○ Push
○ .. we’ll come back to these in a moment


