What now? What about performance? Goals depend on who you're

talking about

wish

User

~z

“~> @&

- ~,

\3/

fast downloads

high availability

Improve HTTP to
compensate for
TCP weakspots

Network
operators

no overload

Content provider

happy users

cost-effective
infrastructure

Caching and Replication

What now? What about performance? Goals depend on who you're
talking about

User

==
\3-//

wish fast downloads

high availability

Improve HTTP to
compensate for
TCP weakspots

Recall TCP forces a client to open a connection before exchanging any
data

Client Server
SYN

SYN/ACK

Establish
connection

Client AC

T K +
request r HTTp GET

«——/
Request

response) \

\. 4/
/
Close connection

Nearly all websites have multiple objects, naive HTTP opens one TGP
connection for each...

Fetching n objects requires ~2n RTTs

TCP establishment
HTTP request/response

One solution to that problem is to use multiple TGP connections in
parallel

L
Pl BN

User Happy!

Py

Content provider Happy!

Network operator Not Happy!
Why?

Another solution is to use persistent connections across multiple
requests (the default in HTTP/1.1)

Avoid overhead of connection set-up and teardown

clients or servers can tear down the connection

Allow TCP to learn more accurate RTT estimate

and with it, more precise timeout value

Allow TCP congestion window to increase

and therefore to leverage higher bandwidth

Yet another solution is to pipeline requests & replies asynchronously,
on one connection

. batch requests and
responses to reduce the Request 1

Client Server

Request
2
number of packets e
. multiple requests can be
packed into one TCP Transfer !
Transfer 2

segment
5 Transfer 3

Yet another solution is to pipeline requests & replies asynchronously,
on one connection

Client Server

. Pipelined connections aren't actually
used Request1
. Butthey seemed like a huge win Requ
est 2
. What happened?! R
- : €quest 3
o .. primarily two reasons
. Reason 1: Bugs
- One manifestation: images on page
are swapped! Transfer 1
o Often blamed on proxy servers Transfer 2
- My guess: bad adaptation of fer 3
. . . . Trans
multithreaded non-pipelined version
. Reason 2: Head-of-line blocking

The average webpage size nowadays is as large as the original DOOM...

Average web page size (KB)

3000 Average Size
KB (projected)
~— Average Size

KB
2250

1500 /

]

/

750 ==

/\//\/Af/

0
01/01/2011 01/01/2012 01/01/2013 01/01/2014 01/01/2015 01/01/2016

Date

Top web sites have decreased in size though because they care about
TCP performance

Average web page weight by Alexa ran k
2400

ssssssss

What now? What about performance? Goals depend on who you're

talking about

wish

User Network Content provider
operators
= & ETIFL
e : . | A
s/
fast downloads no overload happy users

cost-effective
infrastructure

high availability

Caching and Replication

Caching leverages the fact that highly popular content largely
overlaps

Just think of how many times

you request the l@l logo

per day

Vs

how often it actually changes

HTTP Caching

No caching

e Many clients transfer same information

e Generates unnecessary server load
e Generates unnecessary network load

e Clients experience unnecessary latency

Hudson University Empire State University

Yet, a significant portion of the HTTP objects are “uncachable”

Examples dynamic data stock prices, scores, ...
scripts results based on parameters
cookies results may be based on passed data
SSL cannot cache encrypted data

advertising wants to measure # of hits ($$9%)

To limit staleness of cached objects, HTTP enables a client to validate
cached objects

Server hints when an object expires (kind of TTL) as well as the last modified date of an
object

Client conditionally requests a resource using the “if-modified-since” header in the HTTP
request

Server compares this against “last modified” time of the resource and returns:

e Not Modified if the resource has not changed
e OK with the latest version

Caching can be (and is) performed at different locations

client browser cache

close to the client forward proxy
Content Distribution Network (CDN)

close to the destination reverse proxy

HTTP Caching

Reverse proxies
e Cache documents close to servers
e Reduces server load

e Typically done by content provider

Comcast

Hudson University

Empire State University

HTTP Caching

SearchCorp

Forward Proxies

e Cache documents close to clients
e Reduces network traffic
e Reduces latency
e Reduces server load

e Typically done by ISPs or enterprises

Comcast

Hudson University Empire State University

Content Delivery Networks

e Replication is a huge benefit to availability, scalability, and

performance
o We saw this with DNS
o (Can spread the load
o Places content closer to clients (less latency)

o Caching is a form of opportunistic replication
m .. butwhatif a given organization doesn’t have a forward proxy?
m .. what if content provider and wants its content always replicated?

m Idea: Caching and replication as a service — “CDNs 1.0”

CDNs "1.0”

e Large-scale distributed storage infrastructure
o (Usually) administered by one entity
o e.g., Akamai has 275,000+ servers in 136 countries
e Any server can host content for the many clients of the CDN
(virtual hosting)

e How does content provider get its data onto Akamai'’s servers?
e Two major ways

o Pull

o Push

o ..we'll come back to these in a moment

