
Review

Transport

Network layer: communication between hosts

Transport layer: communication between processes

Muxing across many processes

Unit of data: segment

Transport
● Two principal transports: TCP and UDP
● TCP: Transmission Control Protocol

○ reliable, in-order delivery
○ congestion control
○ flow control
○ connection setup

● UDP: User Datagram Protocol
○ unreliable, unordered delivery
○ no-frills extension of “best-effort” IP

● services not available:
○ delay guarantees
○ bandwidth guarantees

Flow control - sliding window

Intuitively, we want to give users with "small" demands what they want,
and evenly distribute the rest

Max-min fair allocation can be approximated by slowly increasing W
until a loss is detected

UDP: Datagram messaging service
UDP provides a connectionless, unreliable transport service

● No-frills extension of “best-effort” IP

● UDP provides only two services to the App layer
○ Multiplexing/Demultiplexing among processes
○ Discarding corrupted packets (optional)

● Finer control over what data is sent and when
○ As soon as an application process writes into the socket
○ ... UDP will package the data and send the packet

● No delay for connection establishment
○ UDP just blasts away without any formal preliminaries
○ ... which avoids introducing any unnecessary delays

● No connection state
○ No allocation of buffers, sequence #s, timers …
○ ... making it easier to handle many active clients at once

● Small packet header overhead
○ UDP header is only 8 bytes

Why Would Anyone Use UDP?

TCP: Reliable, in-order delivery
TCP provides a connection-oriented, reliable, bytestream transport
service

● What UDP provides, plus:
○ Retransmission of lost and corrupted packets
○ Flow control (to not overflow receiver)
○ Congestion control (to not overload network)
○ “Connection” set-up & tear-down

● ACKs
○ Can’t be reliable without knowing whether data has arrived
○ TCP uses byte sequence numbers to identify payloads

● Checksums
○ Can’t be reliable without knowing whether data is corrupted
○ TCP does checksum over TCP and pseudoheader

● Timeouts and retransmissions
○ Can’t be reliable without retransmitting lost/corrupted data
○ TCP retransmits based on timeouts and duplicate ACKs
○ Timeout based on estimate of RTT

Basic Components of Reliability

● Sliding window flow control
○ Allow W contiguous bytes to be in flight

● Cumulative acknowledgements
○ Selective ACKs (full information) also supported

● Single timer set after each payload is ACKed
○ Timer is effectively for the “next expected payload”
○ When timer goes off, resend that payload and wait

■ And double timeout period
● Various tricks related to “fast retransmit”

○ Using duplicate ACKs to trigger retransmission

Other TCP Design Decisions

Establishing a TCP Connection

Reliability: TCP Retransmissions
● Reliability requires retransmitting lost data

● Involves setting timer and retransmitting on timeout

● TCP resets timer whenever new data is ACKed
○ Retx of packet containing “next byte” when timer goes off

RTT Estimation

Because of traffic burstiness and lack of BW reservation,
congestion is inevitable

Congestion control differs from flow control

TCP solves both using two distinct windows

AIMD converge to fairness and efficiency,
it then fluctuates around the optimum (in a stable way)

AIMD converge to fairness and efficiency,
it then fluctuates around the optimum (in a stable way)

The goal of congestion control is to bring the system as close as
possible to this line, and stay there

The goal of congestion control is to bring the system as close as
possible to this line, and stay there

The goal of congestion control is to bring the system as close as
possible to this line, and stay there

The system is fair whenever A and B have equal throughput,
defining a fairness line where a = b

The system is fair whenever A and B have equal throughput,
defining a fairness line where a = b

The system is fair whenever A and B have equal throughput,
defining a fairness line where a = b

The congestion window of a TCP session typically undergoes
multiple cycles of slow-start/AIMD

Detecting losses can be done using ACKs or timeouts, the two
signal differ in their degree of severity

TCP CUBIC
K: point in time when TCP window size will reach Wmax

● K itself is tuneable

increase W as a function of the cube of the distance
between current time and K

● larger increases when further away from K
● smaller increases (cautious) when nearer K

TCP CUBIC default in Linux, most popular TCP for
popular Web servers

TCP over “long, fat pipes”
example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput

throughput in terms of segment loss probability, L [Mathis 1997]:

to achieve 10 Gbps throughput, need a loss rate of L = 2·10-10 YIKES

versions of TCP for long, high-speed scenarios

Leaving the transport layer for application layer
● DNS uses UDP or TCP

● Special protocol - not simply an application, it’s a fundamental
network protocol for making the Internet operate

● www.hawaii.edu ->
○ web3x-vip-www00.its.hawaii.edu ->

■ 128.171.133.5

http://www.hawaii.edu

How do you resolve a name into an IP?
In olden times (1980s)

● all host to address mappings were in a file called hosts.txt
● in /etc/hosts
● Had to download regularly
● *still useful for certain situations. /etc/hosts takes precedence

○ https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts

Problem:

● Scalability in terms of
○ Management
○ Availability
○ Consistency

https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts

To scale, DNS adopt three intertwined hierarchies
naming structure hierarchy of addresses

https://ee.hawaii.edu/home/

Management hierarchy of authority over names

Infrastructure hierarchy of DNS servers

To scale root servers, operators rely on BGP anycast

● Routing finds shortest-paths

● If several locations announce
the same prefix, then routing
will deliver the packets to the
“closest” location

● This enables seamless
replications of resources

Top Level Domain (TLDs) sit below the root

Each root knows the address of all TLD servers

TLD and Authoritative DNS servers
● Top-level domain (TLD) servers

○ Generic domains (e.g., com, org, edu)
○ Country domains (e.g., uk, fr, cn, jp)
○ Special domains (e.g., arpa)
○ Typically managed professionally

■ Network Solutions maintains servers for “com”
■ Educause maintains servers for “edu”

● Authoritative DNS servers
○ Provide public records for hosts at an organization
○ For the organization’s servers (e.g., Web and mail)
○ Can be maintained locally or by a service provider

How does it work? Recursive vs Iterative Queries

 Recursive query

● Ask each server to get
answer for you (most
common)

Iterative query

● Ask server who to ask
next

dns.hawaii.edu

How does it work? Recursive vs Iterative Queries

 Recursive query

● Ask each server to get
answer for you (most
common)

Iterative query

● Ask server who to ask
next

DNS caching
● Performing all these queries takes time

○ And all this before actual communication takes place
○ E.g., 1-second latency before starting Web download

● Caching can greatly reduce overhead
○ The top-level servers very rarely change
○ Popular sites (e.g., www.cnn.com) visited often
○ Local DNS server often has the information cached

● How DNS caching works
○ DNS servers cache responses to queries
○ Responses include a “time to live” (TTL) field
○ Server deletes cached entry after TTL expires (OR SO THEY SAY)

DNS wrap up
● Full distributed, hierarchical system

○ Root -> TLD -> Authoritative
○ Anycast

● Underpins the modern Internet
○ Old way (/etc/hosts) couldn’t scale

● Recursive vs. Iterative modes

● Many different types of records
○ A / AAAA - used to translate domain to IP
○ PTR - reverse of A / AAAA
○ CNAME - name redirection

● Lots of work on DNS privacy / security these days

The web: basic requirements
● Something to represent content with links: HTML

● Client program to access/navigate/display content (e.g. HTML): Web browser

● A way to reference content: URLs
○ It’s how you link/embed content to/in other content across a network
○ First general “handle” for arbitrary Internet content
○ Not just naming a host/processes (address/port)

● Something to host content: Web servers

● A protocol to get content from server to client: HTTP
○ Turns web URLs into TCP connections

Request headers are variable length but still human readable

Why would you need this? You’re already connected?

Remember our DNS discussion about multiple names mapping to
a single IP address - known as virtual hosting.

HyperText Transfer Protocol (HTTP)
● (Simple HTTP 1.0 “GET” request)

● Client creates TCP connection (port 80)
● Client sends request

● Server sends response packets
● Client ACKs them

● Server closes connection

One solution to that problem is to use multiple TCP connections in
parallel

Caching leverages the fact that highly popular content largely
overlaps

Caching can be (and is) performed at different locations

HTTP Caching

Reverse proxies

● Cache documents close to servers

● Reduces server load

● Typically done by content provider

HTTP Caching

Content Delivery Networks
● Replication is a huge benefit to availability, scalability, and

performance
○ We saw this with DNS
○ Can spread the load
○ Places content closer to clients (less latency)

○ Caching is a form of opportunistic replication
■ .. but what if a given organization doesn’t have a forward proxy?
■ .. what if content provider and wants its content always replicated?

■ Idea: Caching and replication as a service — “CDNs 1.0”

CDNs “1.0”
● Large-scale distributed storage infrastructure

○ (Usually) administered by one entity
○ e.g., Akamai has 275,000+ servers in 136 countries

● Any server can host content for the many clients of the CDN
(virtual hosting)

How do you get content onto the CDN servers?
● Pull

○ Akamai servers act like a cache
○ Content provider gives CDN “origin” URL
○ When a client requests from Akamai

■ .. if cached, serve it
■ .. if not cached, request (“pull”) from origin, cache it, serve it

● Push
○ Akamai servers just act like normal servers
○ Content provider uploads content to CDN (“pushes” their content)
○ When a client requests from Akamai, just serve like any web server

● Various tradeoffs
○ Short version: pull is less work for content provider but push gives more control

Basic Requirements for Secure Communication
● Availability: Will the network deliver data?

○ Infrastructure compromise, DDoS
● Authentication: Who is this actor?

○ Spoofing, phishing
● Integrity: Do messages arrive in original form?
● Confidentiality: Can adversary read the data?

○ Sniffing, man-in-the-middle
● Provenance: Who is responsible for this data?

○ Forging responses, denying responsibility
○ Not who sent the data, but who created it

Fundamental crypto: symmetric keys
Both the sender and the receiver use the same secret keys

Fundamental crypto: asymmetric encryption (public key)
● Idea: use two different keys, one to encrypt (e) and one to decrypt (d)

○ A key pair
● Crucial property: knowing e does not give away d
● e can be public: everyone knows it
● If Alice wants to send to Bob, she fetches Bob’s public key (say from

Bob’s home page) and encrypts with it
○ Alice can’t decrypt what she’s sending to Bob …
○ … but then, neither can anyone else (except Bob)

Public Key / Asymmetric Encryption
● Sender uses receiver’s public key

○ Advertised to everyone
● Receiver uses complementary private key

○ Must be kept secret

Cryptographically Strong Hashes
● Hard to find collisions

○ Adversary can’t find two inputs that produce same hash
○ Someone cannot alter message without modifying digest
○ Can succinctly refer to large objects

● Hard to invert
○ Given hash, adversary can’t find input that produces it
○ Can refer obliquely to private objects (e.g., passwords)

■ Send hash of object rather than object itself

Putting It All Together: HTTPS
● Steps after clicking on https://www.amazon.com
● https = “Use HTTP over TLS”

○ SSL = Secure Socket Layer (older version)
○ TLS = Transport Layer Security

■ Successor to SSL, and compatible with it
○ RFC 4346, and many others

● Provides security layer (authentication, encryption) on top of
transport layer
○ Fairly transparent to the app (once set up)

Firewalls
● prevent denial of service attacks:

○ SYN flooding: attacker establishes many bogus TCP connections, no resources
left for “real” connections

● prevent illegal modification/access of internal data
○ e.g., attacker replaces CIA’s homepage with something else

● allow only authorized access to inside network
○ set of authenticated users/hosts

● three types of firewalls:
○ stateless packet filters
○ stateful packet filters
○ application gateways

Stateless Packet Filtering
● internal network connected to Internet via router firewall
● filters packet-by-packet, decision to forward/drop packet based

on:
○ source IP address, destination IP address
○ TCP/UDP source, destination port numbers
○ ICMP message type
○ TCP SYN, ACK bits

Stateful Packet Filtering
● stateless packet filter: heavy handed tool

○ admits packets that “make no sense,” e.g., dest port = 80, ACK bit set, even
though no TCP connection established

● stateful packet filter: track status of every TCP connection
○ track connection setup (SYN), teardown (FIN): determine whether incoming,

outgoing packets “makes sense”
○ timeout inactive connections at firewall: no longer admit packets

Application gateways
filter packets on application data as well as on
IP/TCP/UDP fields.

example: allow select internal users to telnet
outside

1. require all telnet users to telnet through
gateway.

2. for authorized users, gateway sets up
telnet connection to dest host
a. gateway relays data between 2 connections

3. router filter blocks all telnet connections
not originating from gateway

