
How to Address Processes
● to receive messages,

process must have
identifier

● host device has unique
32-bit IP address

● Q: does IP address of host
on which process runs
suffice for identifying the
process?

● A: no, many processes can
be running on same host

● identifier includes both IP
address and port numbers
associated with process on host.

● example port numbers:
○ HTTP server: 80
○ mail server: 25

● to send HTTP message to
ee.hawaii.edu web server:

○ IP address: 128.171.61.135
○ port number: 80

Application Layer Protocols Define:
● types of messages exchanged,

○ e.g., request, response
● message syntax:

○ what fields in messages &
how fields are delineated

● message semantics
○ meaning of information in

fields
● rules for when and how

processes send & respond to
messages

● open protocols:
○ defined in RFCs, everyone

has access to protocol
definition

○ allows for interoperability
■ e.g., HTTP, SMTP

● proprietary protocols:
○ e.g., Skype, Zoom

What do Applications Need from the Transport Layer Below?
● data integrity

○ some apps (e.g., file
transfer, web transactions)
require 100% reliable data
transfer

○ other apps (e.g., audio) can
tolerate some loss

● timing
○ some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

● throughput
○ some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

○ other apps (“elastic apps”)
make use of whatever
throughput they get

● Security
○ encryption, data integrity, …

Transport service requirements: common apps

Internet transport protocols services
TCP service:

● reliable transport between sending
and receiving process

● flow control: sender won’t
overwhelm receiver

● congestion control: throttle sender
when network overloaded

● connection-oriented: setup required
between client and server processes

● does not provide: timing, minimum
throughput guarantee, security

UDP service:

● unreliable data transfer between
sending and receiving process

● does not provide: reliability, flow
control, congestion control, timing,
throughput guarantee, security, or
connection setup.

● Question: Why bother to have UDP?
● Answer: TCP is much heavier weight,

and in many cases UDP is good enough
(in addition to being simpler / faster)

Internet applications, and transport protocols

The Web

The Web as we know it was founded in ~1990, by Tim Berners-Lee,
physicist at CERN

Why was the web so successful?
● Had networks in mind from the beginning

● What made it successful in the beginning is what makes it
successful now
○ It gives a lot of leeway for how websites work (didn’t over-specify)
○ Not tied to any one underlying system
○ No central authority — you can just add your own server/content
○ The ability to quickly navigate information from different sources

The web: basic requirements
● Something to represent content with links: HTML

● Client program to access/navigate/display content (e.g. HTML): Web browser

● A way to reference content: URLs
○ It’s how you link/embed content to/in other content across a network
○ First general “handle” for arbitrary Internet content
○ Not just naming a host/processes (address/port)

● Something to host content: Web servers

● A protocol to get content from server to client: HTTP
○ Turns web URLs into TCP connections

Web basics
● HTML: HyperText Markup Language - Represent content with links
● Browser: Access/navigate/display content
● Provide integrated interface to scattered information

Web basics: URL syntax
scheme: //host[:port]/path/resource

scheme Typically a protocol: http, ftp, https, smtp, rtsp, etc.

host DNS hostname or IP address

port Defaults to protocol’s standard port e.g. http: 80 https: 443

path Traditionally reflecting file system

resource Identifies the desired resource (traditionally a file)

The web: basic requirements
● Something to represent content with links: HTML

● Client program to access/navigate/display content (e.g. HTML): Web browser

● A way to reference content: URLs
○ It’s how you link/embed content to/in other content across a network
○ First general “handle” for arbitrary Internet content
○ Not just naming a host/processes (address/port)

● Something to host content: Web servers

● A protocol to get content from server to client: HTTP
○ Turns web URLs into TCP connections

HyperText Transfer Protocol (HTTP)
● Focusing our discussion on common/current versions of HTTP:

○ HTTP 1.0 (1996) and HTTP 1.1 (1997)
○ These are (significant) outgrowth of original “HTTP 0.9”

● HTTP 2 published in 2015
○ Largely based on work by Google
○ As of 2020, 44% of websites use it
○ Significant departure; largely performance optimizations

● HTTP 3 forthcoming standard
○ Largely based on work by Google
○ As of 2020, 5% of websites use it (more or less Google and Facebook?)
○ Significant departure; largely performance optimizations

HyperText Transfer Protocol (HTTP)
● (Simple HTTP 1.0 “GET” request)

● Client creates TCP connection (port 80)
● Client sends request

● Server sends response packets
● Client ACKs them

● Server closes connection

HTTP client requests

HTTP client requests

HTTP client requests

HTTP client requests

Request headers are variable length but still human readable

Request headers are variable length but still human readable

Why would you need this? You’re already connected?

Request headers are variable length but still human readable

Why would you need this? You’re already connected?

In shared infrastructures (AWS, GCP, Fastly, etc.) multiple names
can be mapped to a single IP address - known as virtual hosting.

More on this when we discuss CDNs

HTTP server responses

HTTP server responses

HTTP server responses

Like request headers, response headers are of variable lengths and
human-readable

