
What now? What about performance? Goals depend on who you’re 
talking about



What now? What about performance? Goals depend on who you’re 
talking about



Recall that a client to open a connection before exchanging any data



Nearly all websites have multiple objects, naive HTTP opens one TCP 
connection for each...



One solution to that problem is to use multiple TCP connections in 
parallel



Another solution is to use persistent connections across multiple 
requests (the default in HTTP/1.1)



Yet another solution is to pipeline requests & replies asynchronously, 
on one connection
● batch requests and 

responses to reduce the 
number of packets

● multiple requests can be 
packed into one TCP 
segment



Yet another solution is to pipeline requests & replies asynchronously, 
on one connection
● Pipelined connections aren’t actually 

used
● But they seemed like a huge win
● What happened?!

○ .. primarily two reasons
● Reason 1: Bugs

○ One manifestation: images on page 
are swapped!

○ Often blamed on proxy servers
○ My guess: bad adaptation of 

multithreaded non-pipelined version
● Reason 2: Head-of-line blocking



HTTP2 Solves HTTP1.1 HOL Blocking Using Stream Multiplexing

● Each stream is independent

● HTTP2 also moves from text to 
binary

● Server push was added



The average webpage size nowadays is as large as the original DOOM...



Top web sites have decreased in size though because they care about 
performance



What now? What about performance? Goals depend on who you’re 
talking about



Caching leverages the fact that highly popular content largely 
overlaps



HTTP Caching

No caching

● Many clients transfer same information

● Generates unnecessary server load

● Generates unnecessary network load

● Clients experience unnecessary latency



Yet, a significant portion of the HTTP objects are “uncachable"



To limit staleness of cached objects, HTTP enables a client to validate 
cached objects
Server hints when an object expires (kind of TTL) as well as the last modified date of an 
object

Client conditionally requests a resource using the “if-modified-since” header in the HTTP 
request

Server compares this against “last modified” time of the resource and returns:

● Not Modified if the resource has not changed 
● OK with the latest version



Caching can be (and is) performed at different locations



HTTP Caching

Reverse proxies

● Cache documents close to servers 

● Reduces server load

● Typically done by content provider



HTTP Caching


