
Content Delivery Networks
● Replication is a huge benefit to availability, scalability, and

performance
○ Can spread the load
○ Places content closer to clients (less latency)

○ Caching is a form of opportunistic replication
■ .. but what if a given organization doesn’t have a forward proxy?
■ .. what if content provider and wants its content always replicated?

■ Idea: Caching and replication as a service — “CDNs 1.0”

CDNs “1.0”
● Large-scale distributed storage infrastructure

○ (Usually) administered by one entity
○ e.g., Akamai has 275,000+ servers in 136 countries

● Any server can host content for the many clients of the CDN
(virtual hosting)

● How does content provider get its data onto Akamai’s servers?
● Two major ways

○ Pull
○ Push
○ .. we’ll come back to these in a moment

CDNs “1.0” - the basic idea
● Content provider buys service from a CDN, e.g., Akamai

● CDN creates new domain names for the customer content provider
○ e.g., e12596.dscj.akamaiedge.net for cnn.com
○ The CDN’s DNS servers are authoritative for the new domains

● Content provider modifies its content so that embedded URLs reference the new
domains

○ “Akamaize” content
○ e.g.: http://www.cnn.com/some-photo.jpg becomes

http://e12596.dscj.akamaiedge.net/some-photo.jpg

● Initial request goes to CNN (e.g., for main http://www.cnn.com page)
○ .. but embedded links go to Akamai, which handles DNS resolution for URL
○ .. Akamai DNS servers pick one of their 275,000+ servers to serve it
○ (based on IP geolocation, server load, etc.)

http://e12596.dscj.akamaiedge.net
http://cnn.com
http://www.cnn.com/some-photo.jpg
http://e12596.dscj.akamaiedge.net/some-photo.jpg

CDNs “1.0” - the basic idea
● Content provider buys service from a CDN, e.g., Akamai

● CDN creates new domain names for the customer content provider
○ e.g., e12596.dscj.akamaiedge.net for cnn.com
○ The CDN’s DNS servers are authoritative for the new domains

● Content provider modifies its content so that embedded URLs reference the new
domains

○ “Akamaize” content
○ e.g.: http://www.cnn.com/some-photo.jpg becomes

http://e12596.dscj.akamaiedge.net/some-photo.jpg

● Initial request goes to CNN (e.g., for main http://www.cnn.com page)
○ .. but embedded links go to Akamai, which handles DNS resolution for URL
○ .. Akamai DNS servers pick one of their 275,000+ servers to serve it
○ (based on IP geolocation, server load, etc.)

http://e12596.dscj.akamaiedge.net
http://cnn.com
http://www.cnn.com/some-photo.jpg
http://e12596.dscj.akamaiedge.net/some-photo.jpg

How do you get content onto the CDN servers?
● Pull

○ Akamai servers act like a cache
○ Content provider gives CDN “origin” URL
○ When a client requests from Akamai

■ .. if cached, serve it
■ .. if not cached, request (“pull”) from origin, cache it, serve it

● Push
○ Akamai servers just act like normal servers
○ Content provider uploads content to CDN (“pushes” their content)
○ When a client requests from Akamai, just serve like any web server

● Various tradeoffs
○ Short version: pull is less work for content provider but push gives more control

DNS

How do you resolve a name into an IP?
In olden times (1980s)

● all host to address mappings were in a file called hosts.txt
● in /etc/hosts
● Had to download regularly
● *still useful for certain situations. /etc/hosts takes precedence

○ https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts

Problem:

● Scalability in terms of
○ Management
○ Availability
○ Consistency

https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts

How do you resolve a name into an IP?
In olden times (1980s)

● all host to address mappings were in a file called hosts.txt
● in /etc/hosts
● *still useful for certain situations. /etc/hosts takes precedence

○ https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts

Problem:

● Scalability in terms of
○ Management
○ Availability
○ Consistency

What do you do when you need scalability?

https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts

How do you resolve a name into an IP?
In olden times (1980s)

● all host to address mappings were in a file called hosts.txt
● in /etc/hosts
● *still useful for certain situations. /etc/hosts takes precedence

○ https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts

Problem:

● Scalability in terms of
○ Management
○ Availability
○ Consistency

What do you do when you need scalability?
a hierarchical structure

https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts

To scale, DNS adopt three intertwined hierarchies
naming structure hierarchy of addresses

https://ee.hawaii.edu/home/

Management hierarchy of authority over names

Infrastructure hierarchy of DNS servers

To scale, DNS adopt three intertwined hierarchies
naming structure hierarchy of addresses

https://ee.hawaii.edu/home/

Management hierarchy of authority over names

Infrastructure hierarchy of DNS servers

DNS root

Located in Virginia, USA

Every server knows the
address of root servers -
needed for bootstrap
https://www.internic.net/doma
in/named.root

How do we make the root
scale?

https://www.internic.net/domain/named.root
https://www.internic.net/domain/named.root

DNS root

13 root servers (see
http://www.root-servers.org/)

Labeled A through M

● Does this scale?

http://www.root-servers.org/

To scale root servers, operators rely on BGP anycast

● Routing finds shortest-paths

● If several locations announce
the same prefix, then routing
will deliver the packets to the
“closest” location

● This enables seamless
replications of resources

To scale root servers, operators rely on BGP anycast

● K root (RIPE) anycast
○ Color == server used

● BGP is mediocre at this!

DNS scale

Each instance receives up to
80k queries per second

summing up to a few billions
of queries per day

Top Level Domain (TLDs) sit below the root

Each root knows the address of all TLD servers

TLD and Authoritative DNS servers
● Top-level domain (TLD) servers

○ Generic domains (e.g., com, org, edu)
○ Country domains (e.g., uk, fr, cn, jp)
○ Special domains (e.g., arpa)
○ Typically managed professionally

■ Network Solutions maintains servers for “com”
■ Educause maintains servers for “edu”

● Authoritative DNS servers
○ Provide public records for hosts at an organization
○ For the organization’s servers (e.g., Web and mail)
○ Can be maintained locally or by a service provider

Domains are subtrees

hawaii ucsb princeton

A name, e.g. ee.hawaii.edu, represents a leaf-to-root path in the
hierarchy

hawaii ucsb princeton

www ee eng

DNS Hierarchy

.co
m?

foo.com?

www.foo.com?

To ensure availability, each domain must have at least a primary and
secondary DNS server

Ensure name service availability as long as one of the servers is up

DNS queries can be load-balanced across the replicas

On timeout, client use alternate servers exponential backoff when
trying the same server

Overall, the DNS system is highly scalable, available, and extensible
Scalable #names, #updates, #lookups, #users,

but also in terms of administration

Available domains replicate independently of each other

Extensible any level (including the TLDs) can be modified
independently

