
How do we achieve correctness and with what tradeoffs?



How do we achieve correctness and with what tradeoffs?



There is a clear tradeoff between timeliness and efficiency in the 
selection of the timeout value



There is a clear tradeoff between timeliness and efficiency in the 
selection of the timeout value

This algorithm is known as “stop 
and wait”



Stop and Wait demo

https://www2.tkn.tu-berlin.de/teaching/rn/animations/gbn_sr/

(for stop and wait, choose go back N and set the window size to 1)

https://www2.tkn.tu-berlin.de/teaching/rn/animations/gbn_sr/


Timeliness argues for small timers, efficiency for large timers



Even with small timers, stop and wait has terrible timeliness - one 
packet per round trip time (RTT) 



Even with small timers, stop and wait has terrible timeliness - one 
packet per round trip time (RTT) 

How do we improve this?



An obvious solution to improve timeliness is to send multiple 
packets at the same time



An obvious solution to improve timeliness is to send multiple 
packets at the same time



Sending multiple packets improves timeliness, but it can also 
overwhelm the receiver



Sending multiple packets improves timeliness, but it can also 
overwhelm the receiver

How do we solve this problem?



Flow control - sliding window



Flow control - sliding window



Flow control - sliding window



Flow control - sliding window

Timeliness of the window protocol depends on
the size of the sending window



Efficiency of the protocol depends on two factors



Efficiency of the protocol depends on two factors



ACKing individual packets provides detailed feedback, but triggers 
unnecessary retransmission upon losses



Cumulative ACKs enables to recover from lost ACKs, but provides 
coarse-grained information to the sender



Full Information Feedback prevents unnecessary retransmission, 
but can induce a sizable overhead



Full Information Feedback prevents unnecessary retransmission, 
but can induce a sizable overhead

Once again, Internet design is all about balancing tradeoffs.



Efficiency of the protocol depends on two factors



We’ve been talking about detecting loss using timeouts. That’s not 
the only way

ACKS



With individual ACKs, missing packets (gaps) are implicit



With full information, missing packets (gaps) are explicit



With cumulative ACKs, missing packets are harder to know



Duplicate ACKs are a sign of isolated losses. Dealing with them is 
trickier though.



What about fairness?



When n entities are using our transport mechanism, we want a fair 
allocation of the available bandwidth



Consider this simple network in which three hosts are sharing two links



An equal allocation is certainly “fair”, but what about the efficiency of 
the network?



Fairness and efficiency don’t always play along, here an unfair allocation 
ends up more efficient



Fairness and efficiency don’t always play along, here an unfair allocation 
ends up more efficient

What is fair?



Equal-per-flow isn’t really fair as (A,C) crosses two links: it uses more 
resources



With equal-per-flow, A ends up with 1 Gbps because it sends 2 flows, 
while B ends up with 500 Mbps

Is that fair?



Seeking an exact notion of fairness is not productive. What matters is to 
avoid starvation.

equal-per-flow is good enough for this



Simply dividing the available bandwidth doesn’t work in practice since 
flows can see different bottlenecks



Intuitively, we want to give users with "small" demands what they want, 
and evenly distribute the rest



Max-min fair allocation can easily be computed


