Intuitively, we want to give users with "small” demands what they want,
and evenly distribute the rest

Max-min fair allocation is such that

the lowest demand is maximized

after the lowest demand has been satisfied,
the second lowest demand is maximized

after the second lowest demand has been satisfied,
the third lowest demand is maximized

and so on...

Max-min fair allocation can easily be computed

step 1

step 2

step 3

step 4

Start with all flows at rate 0

Increase the flows until there is
a new bottleneck in the network

Hold the fixed rate of the flows
that are bottlenecked

Go to step 2 for the remaining flows

Done!

Example

Demands: {2, 2.6, 4, 5}
Capacity: 10

Example

Consider the network on the right consisting
of 5 nodes (A to E). Each link has a maximal
bandwidth indicated in red. 7 flows (1 to 7)
are using the network at the same time. You
can assume that they have to send a lot of
traffic and will use whatever bandwidth they
will get. Apply the max-min fair allocation
algorithm to find a fair bandwidth allocation
for each flow.

For each flow, what is the bottleneck link?

A network with shared links and 7 flows.

Example

Consider the network on the right consisting
of 5 nodes (A to E). Each link has a maximal
bandwidth indicated in red. 7 flows (1 to 7)
are using the network at the same time. You
can assume that they have to send a lot of
traffic and will use whatever bandwidth they
will get. Apply the max-min fair allocation
algorithm to find a fair bandwidth allocation
for each flow.

For each flow, what is the bottleneck link?

Bottleneck | n ¢ ' cp i Bc | AB | BD |
link i i i
Flow 1

______ a-g-c | ' S e o
Flow 2

B | Ut
Flow 3 9

B-C-D-E
Flow 4

...... B-c-o [' O
Flow 5 i

__________ B-p | ' (8 2® an
Flow 6 i

...... a-B-p_| 1 110 2 e
Flow 7 1

B-D-E

Max-min fair allocation can be approximated by slowly increasing W
until a loss is detected

Intuition Progressively increase max=receiving window
the sending window size

Whenever a loss is detected, signal of congestion
decrease the window size

Repeat

Design a correct, timely, efficient and fair transport mechanism

knowing that

packets can get lost
corrupted
reordered
delayed
duplicated

/

Dealing with corruption is easy:

~

Rely on a checksum, treat corrupted packets as lost

\

/

The effect of reordering depends on the type of ACKing
mechanism used

individual ACKs no problem
full feedback no problem

cumm. ACKs create duplicate ACKs

/

\

Long delays can create useless timeouts, for all
designs

~

J

Packet duplicates can lead to duplicate ACKs whose effects
will depend on the ACKing mechanism used

individual ACKs no problem
full feedback no problem

cumm. ACKs problematic

Here is one correct, timely, efficient and fair transport
mechanism

ACKing full information ACK

retransmission after timeout

after k subsequent ACKs

window management additive increase upon successful delivery

/ multiple decrease when timeouts

We'll come back to this when we see TCP

Reliable Transport Examples

Go-Back-N (GBN) is a simple sliding window protocol using
cumulative ACKs

principle receiver should be as simple as possible

receiver delivers packets in-order to the upper layer

for each received segment,
ACK the last in-order packet delivered (cumulative)

sender use a single timer to detect loss, reset at each new ACK

upon timeout, resend all W packets
starting with the lost one

Go-Back-N (GBN) is a simple sliding window protocol using
cumulative ACKs

principle receiver should be as simple as possible

4 N

receive

Works well with few errors

sender%mrmmr{mmdeK

upon timeout, resend all W packets

starting with the lost one

Selective Repeat (SR) avoids unnecessary retransmissions by
using per-packet ACKs

principle avoids unnecessary retransmissions

receiver acknowledge each packet, in-order or not

buffer out-of-order packets

sender use per-packet timer to detect loss

upon loss, only resend the lost packet

Selective Repeat (SR) avoids unnecessary retransmissions by
using per-packet ACKs

principle avoids unnecessary retransmissions

4 N

receiver

Only retransmit the packets that were lost, receiver is
more complex

sender guse—pm—paurernnm—ms#/

upon loss, only resend the lost packet

[llustration

https://www?2.tkn.tu-berlin.de/teaching/rn/animations/gbn sr/

https://www2.tkn.tu-berlin.de/teaching/rn/animations/gbn_sr/

GBN Question

Assume you have a Go-Back-N (GBN) sender and receiver. The receiver
acknowledges each data segment with a cumulative ACK which indicates the
next expected data segment. Furthermore, it saves out-of-order segments
in a buffer. The sender and receiver buffer can contain four segments each.
The time-out period is much larger than the time required for the sender to
transmit four segments in a row.

e The sender wants to transmit 10 data segments (0,. .. ,9) to the receiver.
Assume that exactly one segment is lost. How many segments has the
sender to transmit in the best and worst case? For each case, indicate
which segment was lost

