TCP Header

Source port

Destination port

Sequence number

Acknowledgment
HdrLen| 0 | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Data

.. Provided Using TCP “Segments”

Host A
Segment sent when:
TCP Data 1. Segment full (Max Segment Size),
2. Not full, but times out
TCP Data
Host B

TCP Segment

e |P packet
o No bigger than Maximum Transmission Unit (MTU)
o E.g., upto 1500 bytes with Ethernet
e TCP packet
o IP packet with a TCP header and data inside
o TCP header >= 20 bytes long
o TCP segment

o No more than Maximum Segment Size (MSS) bytes
o E.g., up to 1460 consecutive bytes from the stream
o MSS =MTU - (IP header) - (TCP header)

Sequence Numbers

ISN (initial sequence number)

\ k bytes

Host A

Sequence number
= 1st byte in segment =
ISN + k

Sequence Numbers

ISN (initial sequence number)

L ®

Host A

Sequence number
= 1st byte in segment =
ISN + k

Host B

TCP Data

TCP
HDR

TCP
TCP Data | /3=

ACK sequence number
= next expected byte
= seqgno + length(data)

ACKing and Sequence Numbers

e Sender sends packet
o Data starts with sequence number X

o Packet contains B bytes
m X X+1, X+2, ... X+B-1
e Upon receipt of packet, receiver sends an ACK
o If all data prior to X already received:
m ACKacknowledges X+B (because that is next expected byte)
o If highest contiguous byte received is smaller value Y
m ACK acknowledges Y+1
m Even if this has been ACKed before

TCP Header

Source port

Destination port

Sequence number

Acknowledgment

HdrLen| o

Flags (

“Advertised window
\

Checksum

Urgent pointer

Options (variable)

Data

Sliding Window Flow Control

e Advertised Window: W
o Can send W bytes beyond the next expected byte

e Receiver uses W to prevent sender from overflowing buffer

e Limits number of bytes sender can have in flight

Advertised Window Limits Rate

Sender can send no faster than W/RTT bytes/sec

Receiver only advertises more space when it has consumed old
arriving data

In original TCP design, that was the sole protocol mechanism
controlling sender’s rate

Establishing a TCP Connection

A B
SYN ‘
\>

w

ACK

%
%

Each host tells
its ISN to the
other host.

Three-way handshake to establish connection
« Host A sends a SYN (open; “synchronize sequence numbers”)
» Host B returns a SYN acknowledgment (SYN ACK)
» Host A sends an ACK to acknowledge the SYN ACK

TCP Header

Source port Destination port
Sequence number
Flags: gyN
ACK Acknowledgment
;l QT HdrLen! g-| Flags |Advertised window
PSH Checksum Urgent pointer
URG

Options (variable)

Handshake step 1: A's initial SYN packet

Flags: (SYN
ACK
FIN
RST
PSH
URG

A's port

B'’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

5=20B |)0
N |

Advertised window

Checksum Urgent pointer

Options (variable)

A tells B it wants to open a connection...

Handshake step 2: B's SYN-ACK packet

Flags: /SYN
ACK
FIN
RST
PSH
URG

B’s port

A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

20B |0

Advertised window

Checksum Urgent pointer

Onptions (variable)

B tells A it accepts, and is ready to hear the next byte...

... upon receiving this packet, A can start sending data

Handshake step 3: A's ACK of the SYN-ACK packet

Flags: SYN
ACK
FIN
RST
PSH
URG

A's port

B’s port

A’s Initial Sequence Number

B’s ISN plus 1

20B | 0

Flags

Advertised window

Checksum

Urgent pointer

Options (variable)

A tells B it’s likewise okay to start sending

... upon receiving this packet, B can start sending data

Timing Diagram: 3-Way Handshaking

Passive
Open
Active
Open Server
Client (initiator) listen()
omnest0 W
=X

Ack=x*+1

SYN + ACK, SeqNum = ¥:
AC -
accept ()

What if the SYN Packet Gets Lost?

e Suppose the SYN packet gets lost
o Packet is lost inside the network, or:
o Server discards the packet (e.g., listen queue is full)
e Eventually, no SYN-ACK arrives
o Sender sets a timer and waits for the SYN-ACK
o ...and retransmits the SYN if needed
e How should the TCP sender set the timer?
o Sender has no idea how far away the receiver is
o Hard to guess a reasonable length of time to wait
o SHOULD (RFCs 1122 & 2988) use default of 3 seconds
m Other implementations instead use 6 seconds

TCP Connection Teardown

Normal Termination, One Side At A Time

B
v X
2 9 s/ \z z \m &
S %TQ“'/\% 5%2%’
‘ﬁ [BN BN J
A Y

time

Finish (FIN) to close and receive remaining bytes
« FIN occupies one octet in the sequence space

Other host ack’s the octet to confirm

Closes A's side of the connection, but not B’'s

» Until B likewise sends a FIN
» Which A then acks

Normal Termination, Both Together

Same as before, but B sets FIN with their ack of A's FIN

% 2
é%s x &5
27 & e
7~ 7~

Abrupt Termination

L.a%
RST
ered
RST

A sends a RESET (RST) to B

» E.g., because app. process on A crashed
That’s it

« B does not ack the RST

« Thus, RST is not delivered reliably

» And: any data in flight is lost
« But: if B sends anything more, will elicit another RST

TCP State Transitions

CLOSED - ,____:\m
e Active open /SYM
Passive open Close \

Close %, \

LISTEN
U
)

|
SYN/SYN + ACK/ \ Send SYN

SYN_RCVD “_I —— SN Ak — SYN_SENT

ACK N\ /TSN + ACK/ACK Data, ACK

L
[staausreod exchanges
Close/FIN ESTABLISHED
J o are in here

Close/FIN -~ . FIN/ACK

FIN_WAIT_1 28 CLOSE_WAIT
ACK \ Close/FIN
FIN_WAIT_2 CLOSING LAST_ACK
| i
__ FIN/ACK ke

TIME_WAIT

CLOSED

Reliability: TCP Retransmissions

e Reliability requires retransmitting lost data
e Involves setting timer and retransmitting on timeout

e TCP resets timer whenever new data is ACKed
o Retx of packet containing “next byte” when timer goes off

Example

e Arriving ACK expects 100
e Sender sends packets 100, 200, 300, 400, 500

o Timer set for 100

e Arriving ACK expects 300
o Timer set for 300

e Timer goes off
o Packet 300 is resent

e Arriving ACK expects 600

o Packet 600 sent
o Timer set for 600

Setting the Timeout Value
RTTY RTIT l\ 1

\

Timeout too long = inefficient Timeout too short -
duplicate packets

RTT Estimation

Use exponential averaging of RTT samples

SampleRTT= AckRevdTime- SendPacketTime
EstimatedRTT = o x EstimatedRTT + (1-a.) x SampleRTT

O<a=l
N SampleRTT
>
Y

Exponential Averaging Example

EstimatedRTT = a*EstimatedRTT + (1 — a)*SampleRTT

RTT

Assume RTT is constant > SampleRTT = RTT

EstimatedRTT (a.= 0.5)

time

