
We Need RTT, but Problem: Ambiguous Measurements



Karn/Partridge Algorithm
● Measure SampleRTT only for original transmissions

○ Once a segment has been retransmitted, do not use it for any further 
measurements

○ Computes EstimatedRTT using α = 0.875
● Timeout value (RTO) = 2 × EstimatedRTT
● Use exponential backoff for repeated retransmissions

○ Every time RTO timer expires, set RTO ← 2·RTO 
■ (Up to maximum ≥ 60 sec)

○ Every time new measurement comes in (= successful original transmission), 
collapse RTO back to 2 × EstimatedRTT



Reality
● Implementations often use a coarse-grained timer

○ 500 msec is typical 

● So what?
○ Above algorithms are largely irrelevant
○ Incurring a timeout is expensive

● So we rely on duplicate ACKs



Loss with Cumulative ACKs
● Sender sends packets with 100B and seqnos.:

○ 100, 200, 300, 400, 500, 600, 700, 800, 900, …

● Assume the fifth packet (seqno 500) is lost, but no others

● Stream of ACKs will be:
○ 200, 300, 400, 500, 500, 500, 500,...



Loss with Cumulative ACKs
● “Duplicate ACKs” are a sign of an isolated loss

○ The lack of ACK progress means 500 hasn’t been delivered 
○ Stream of ACKs means *some* packets are being delivered

● Therefore, could trigger resend upon receiving k duplicate ACKs
○ TCP uses k=3



Congestion Control



Because of traffic burstiness and lack of BW reservation,
congestion is inevitable



Congestion is not a new problem
● The Internet almost died of congestion in 1986

○ throughput collapsed from 32 Kbps to... 40 bps

● Van Jacobson saved us with Congestion Control
○ his solution went immediately into BSD

● Recent resurgence of research interest after brief lag
○ new methods (ML), context (Data centers), requirements



Congestion is not a new problem
● The Internet almost died of congestion in 1986

○ throughput collapsed from 32 Kbps to... 40 bps

● Van Jacobson saved us with Congestion Control
○ his solution went right into BSD

● Recent resurgence of research interest after brief lag
○ new methods (ML), context (Data centers), requirements



Congestion is not a new problem



Congestion collapse



Congestion collapse



Congestion control aims to solve three problems



Congestion control differs from flow control



TCP solves both using two distinct windows



The sender adapts its sending rate based on these two windows



The 2 key mechanisms of Congestion Control



The 2 key mechanisms of Congestion Control



There are essentially three ways to detect congestion



There are essentially three ways to detect congestion

Best solution - delay and signaling-based methods are hard & risky



Detecting losses can be done using ACKs or timeouts, the two 
signal differ in their degree of severity



The 2 key mechanisms of Congestion Control



Remember: congestion control aims to solve three problems



Remember: congestion control aims to solve three problems



The goal here is to quickly get a first-order estimate of the available 
bandwidth



This increase phase, known as slow start, corresponds to an... 
exponential increase of CWND



The problem with slow start is that it can result in a full window of 
packet losses





The goal here is to track the available bandwidth, and oscillate 
around its current value



The goal here is to track the available bandwidth, and oscillate 
around its current value



The goal here is to track the available bandwidth, and oscillate 
around its current value

How do we choose a scheme? Based on fairness


