We Need RTT, but Problem: Ambiguous Measurements

How do we differentiate between the real ACK, and ACK of the
retransmitted packet?

3.
X Q
g
ﬁ
g
@
3
3
s
SampleRTT

SampleRTT
@

Karn/Partridge Algorithm

e Measure SampleRTT only for original transmissions
o Once a segment has been retransmitted, do not use it for any further
measurements
o Computes EstimatedRTT using a = 0.875

e Timeoutvalue (RTO) =2 x EstimatedRTT

e Use exponential backoff for repeated retransmissions
o Every time RTO timer expires, set RTO « 2:RTO
m (Upto maximum = 60 sec)
o Every time new measurement comes in (= successful original transmission),
collapse RTO back to 2 x EstimatedRTT

Reality

e |Implementations often use a coarse-grained timer
o 500 msec is typical

e So what?

o Above algorithms are largely irrelevant
o Incurring a timeout is expensive

e So we rely on duplicate ACKs

Loss with Cumulative ACKs

e Sender sends packets with 100B and segnos.:
o 100, 200, 300, 400, 500, 600, 700, 800, 900, ...

e Assume the fifth packet (segno 500) is lost, but no others

e Stream of ACKs will be:
o 200, 300, 400, 500, 500, 500, 500,...

Loss with Cumulative ACKs

e “Duplicate ACKs" are a sign of an isolated loss

o The lack of ACK progress means 500 hasn't been delivered
o Stream of ACKs means *some* packets are being delivered

e Therefore, could trigger resend upon receiving k duplicate ACKs
o TCP uses k=3

Congestion Control

Because of traffic burstiness and lack of BW reservation,
congestion is inevitable

If many packets arrive within
a short period of time
the node cannot keep up anymore

Congestion is not a new problem

e The Internet almost died of congestion in 1986
o throughput collapsed from 32 Kbps to... 40 bps

e Van Jacobson saved us with Congestion Control
o his solution went immediately into BSD

e Recent resurgence of research interest after brief lag
o new methods (ML), context (Data centers), requirements

Congestion is not a new problem

e The Internet almost died of congestion in 1986
o throughput collapsed from 32 Kbps to... 40 bps

e Van Jacobson saved us with Congestion Control
o his solution went right into BSD

e Recent resurgence of research interest after brief lag
o new methods (ML), context (Data centers), requirements

Congestion is not a new problem

original
behavior

meaning

net effect

On connection,
nodes send full window of packets

Upon timer expiration,
retransmit packet immediately

sending rate only limited by flow control

window-sized burst of packets

Congestion collapse

Knee point after which
throughput increases slowly
delay increases quickly
Cliff point after which
throughput decreases quickly
delay tends to infinity

Throughput

Delay

congestion
collapse

Load

Congestion collapse

o
~

60

50
T

Packet Sequence Number (KB)
30 40

10
o 1*9:.__:1_.__ e _ﬂ 1

aL-

Send Time (sec)

= 5
6

=ir

Congestion control aims to solve three problems

#1

#2

#3

bandwidth

bandwidth

How to adjust the bandwidth of a single flow
to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps...

How to adjust the bandwidth of a single flow
to variation of the bottleneck bandwidth?

How to share bandwidth “fairly" among flows,
without overloading the network

Congestion control differs from flow control

Flow control

Congestion control

prevents one fast sender from

overloading a slow receiver

prevents a set of senders from

overloading the network

TCP solves hoth using two distinct windows

solved using a receiving window

solved using a “congestion” window

The sender adapts its sending rate based on these two windows

Receiving Window

Congestion Window

Sender Window

How many bytes can be sent
without overflowing the receiver buffer?

based on the receiver input

How many bytes can be sent
without overflowing the routers?

based on network conditions

minimum(CWND, RWND)

The 2 key mechanisms of Congestion Control

detecting reacting to

congestion congestion

The 2 key mechanisms of Congestion Control

-

detecting

congestion

~

reacting to

congestion

There are essentially three ways to detect congestion

Approach #1 Network could tell the source

but signal itself could be lost

Approach #2 Measure packet delay
but signal is noisy

delay often varies considerably

Approach #3 Measure packet loss

fail-safe signal that TCP already has to detect

There are essentially three ways to detect congestion

Approach #1 Network could tell the source
4 N
Best solution - delay and signaling-based methods are hard & risky
- /
but signar Is noisy
delay often varies considerably
4)
Approach #3 Measure packet loss
fail-safe signal that TCP already has to detect
- J

Detecting losses can be done using ACKs or timeouts, the two
signal differ in their degree of severity

duplicated ACKs mild congestion signal

packets are still making it

timeout severe congestion signal

multiple consequent losses

The 2 key mechanisms of Congestion Control

-~

detecting reacting to

congestion congestion

Remember: congestion control aims to solve three problems

#1

#2

#3

bandwidth

bandwidth

How to adjust the bandwidth of a single flow
to the bottleneck bandwidth?

could be 1 Mbps or 1 Gbps...

How to adjust the bandwidth of a single flow
to variation of the bottleneck bandwidth?

How to share bandwidth “fairly" among flows,
without overloading the network

Remember: congestion control aims to solve three problems

4 N
#1 bandwidth How to adjust the bandwidth of a single flow
to the bottleneck bandwidth?
could be 1 Mbps or 1 Gbps...
\ %
#2 bandwidth How to adjust the bandwidth of a single flow
adaptatio to variation of the bottleneck bandwidth?
#3 How to share bandwidth “fairly" among flows,

without overloading the network

The goal here is to quickly get a first-order estimate of the available
bandwidth

Intuition Start slow but rapidly increase

until a packet drop occurs

Increase cwnd = 1 initially

policy cwnd += 1 upon receipt of an ACK

This increase phase, known as slow start, corresponds to an...
exponential increase of CWND

] 2 3 4 8
)| [T T i > [[()

=
D A D\P\ AA/ D

Dst

slow start is called like this only because of starting point

Src

The problem with slow start is that it can result in a full window of

packet losses

Example

Solution

Assume that CWND is just enough to “fill the pipe”
After one RTT, CWND has doubled

All the excess packets are now dropped

We need a more gentle adjustment algorithm
once we have a rough estimate of the bandwidth

#1 bandwidth How to adjust the bandwidth of a single flow
estimatior to the bottleneck bandwidth?
could be 1 Mbps or 1 Gbps...
#2 bandwidth How to adjust the bandwidth of a single flow
adaptatio to variation of the bottleneck bandwidth?
#3 How to share bandwidth “fairly" among flows,

without overloading the network

The goal here is to track the available bandwidth, and oscillate
around its current value

Two possible variations

Multiplicative Increase or Decrease

cwnd = a * cwnd

Additive Increase or Decrease

cwnd = b + cwnd

... leading to four alternative design

The goal here is to track the available bandwidth, and oscillate

around its current value

AIAD

AIMD

MIAD

MIMD

increase
behavior
gentle
gentle
aggressive

aggressive

decrease
behavior
gentle
aggressive
gentle

aggressive

The goal here is to track the available bandwidth, and oscillate
around its current value

[How do we choose a scheme? Based on fairness }

AIAD gentle gentle
AIMD gentle aggressive
MIAD aggressive gentle

MIMD aggressive aggressive

