
The goal here is to track the available bandwidth, and oscillate
around its current value

How do we choose a scheme? Based on fairness

TCP notion of fairness: 2 identical flows should end up with the
same bandwidth

We can analyze the system behavior using a system trajectory plot

The system is efficient if the capacity is fully used, defining an
efficiency line where a + b = 1

The goal of congestion control is to bring the system as close as
possible to this line, and stay there

The goal of congestion control is to bring the system as close as
possible to this line, and stay there

The goal of congestion control is to bring the system as close as
possible to this line, and stay there

The system is fair whenever A and B have equal throughput,
defining a fairness line where a = b

The system is fair whenever A and B have equal throughput,
defining a fairness line where a = b

The system is fair whenever A and B have equal throughput,
defining a fairness line where a = b

AIAD does not converge to fairness, nor efficiency:
the system fluctuates between two fairness states

MIMD does not converge to fairness, nor efficiency:
the system fluctuates along a equi-fairness line

MIAD converges to a totally unfair allocation,
favoring the flow with a greater rate at the beginning

Congestion control exercise

Consider the situation in which two hosts, A and
B, are concurrently using a 1 Mbps link with a
Maximum Segment Size (MSS) of 100 kb.

Assuming that B starts with 500 kbps and A with
200 kbps (see left picture).

What would happen if both are using MIAD
(assume both senders double their CWND MSS
when there is no congestion and subtract it by 1
upon congestion).

Congestion control exercise

Solution

1. (.2, .5)
2. (.4, 1) > congestion!
3. (.3, .9) > congestion!
4. (.2, .8)
5. (.4, 1.6) > congestion!
6. (.3, 1.5) > congestion!
7. (.2, 1.4) > congestion!
8. (.1, 1.3) > congestion!
9. (0, 1.2) > congestion!

10. (0, 1.1) > congestion!
11. (0, 1)

The sender which benefits from a bigger initial share will
end up using the entire link.

AIMD converge to fairness and efficiency,
it then fluctuates around the optimum (in a stable way)

AIMD converge to fairness and efficiency,
it then fluctuates around the optimum (in a stable way)

Congestion control exercise

Consider the situation in which two hosts, A and
B, are concurrently using a 1 Mbps link with a
Maximum Segment Size (MSS) of 100 kb.

Assuming that B starts with 500 kbps and A with
200 kbps (see left picture).

What would happen if both are using AIMD
(assume both senders increase their CWND by 1
MSS when there is no congestion and divide it by
2 upon congestion).

Congestion control exercise

Solution

1. (.3, .6)
2. (.4, .7) > congestion!
3. (.2, .35)
4. (.3, .45)
5. (.4, .55)
6. (.5, .65) > congestion!
7. (.25, .325)

Because of its bigger share, B loses more
than A because of the halving, eventually the
system converges along the fairness line.

TCP uses AIMD for congestion avoidance

The congestion window of a TCP session typically undergoes
multiple cycles of slow-start/AIMD

Going back all the way back to 0 upon timeout completely destroys
throughput

Detecting losses can be done using ACKs or timeouts, the two
signal differ in their degree of severity

TCP automatically resends a segment after receiving 3 duplicate
ACKs for it
Known as fast retransmit

Timeouts are slow (1 second is fastest timeout on many TCPs)

When packet is lost, receiver still ACKs last in-order packet

Use 3 duplicate ACKs to indicate a loss; detect losses quickly

After a fast retransmit, TCP switches back to AIMD,
without going all way the back to 0
Known as fast recovery

Goal: avoid stalling after loss

If there are still ACKs coming in, then no need for slow start If a packet
has made it through -> we can send another one

Divide cwnd by 2 after fast retransmit

Increment cwnd by 1 full pkt for each additional duplicate ACK

More sophisticated TCP

TCP congestion control

Congestion control makes TCP throughput look like a “sawtooth”

