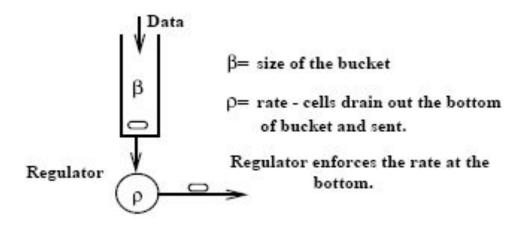
QoS traffic shaping

- In packet networks, admission control, reservation is not sufficient to provide QoS guarantees
- Need **traffic shaping** at the entry to network and within network
- Traffic shaping
 - Decides how packets will be sent into the network , hence regulates traffic
 - Decides whether to accept a flow's data
 - Polices flows

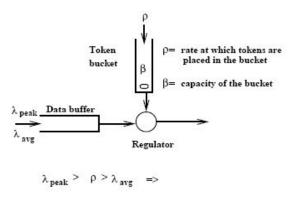
Traffic shaping

- Traffic shape
 - A way of a flow to describe its traffic to the network
- Based on traffic shape, network manager (s) can determine if flow should be admitted into the network
- Given traffic shape, network manager(s) can periodically monitor flow's traffic


Traffic shaping example

- If we want to transmit data of 100 Mbps,
 - Traffic Shape A: Do we take 1 packet size of size 100 Mbit and send it once a second, or
 - Traffic Shape B: Do we take 1 packet of size 1 Kbit and send it every 10 microseconds?

Congestion control algos: Leaky bucket


- Variable rate traffic comes in, leaves bucket at **fixed** rate
- If the bucket overflows packets are dropped
- Converts bursty traffic to uniform avoiding congestion

Each flow has its own leaky bucket.

Congestion control algos: Token bucket

- Goal to fix with LB: don't lose data
- Tokens added at regular intervals
- If there is a packet ready to send, remove tokens based on size
- TB discards tokens, not packets
- Allows for bursts spend more tokens

stability and bandwidth utilization

Token bucket

- The effect of TB is different than Leaky Bucket (LB)
- Consider sending packet of size b tokens (b< β):
 - Token bucket is full packet is sent and b tokens are removed from bucket
 - Token bucket is empty packet must wait until b tokens drip into bucket, at which time it is sent
 - Bucket is partially full let's consider B tokens in bucket;
 - if $b \le B$ then packet is sent immediately,
 - Else wait for remaining b-B tokens before being sent.

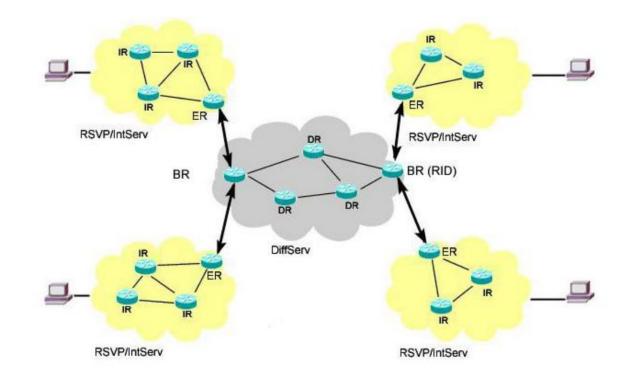
QoS: Integrated Services (IntServ)

- Defined service classes
 - Provides *guaranteed* service for intolerant applications
 - *Controlled load* for tolerant applications (e.g., buffered audio)
- Client *preemptively* and *actively* requests resources directly from the network using Resource Reservation Protocol (RSVP)
- Uses WFQ to isolate controlled load services from other traffic
- Uses token bucket

Problems with IntServ


- Scalability: **per-flow state** & classification
 - Aggregation/encapsulation techniques can help
 - Can **overprovision** big links, per-flow ok on small links
 - Scalability can be fixed but it's difficult
- Economic arrangements:
 - Need sophisticated settlements between ISPs
 - Contemporary settlements are primitive
 - Unidirectional, or barter
- User charging mechanisms: need QoS pricing
 - On a fine-grained basis

Differentiated services (DiffServe)


- How to know which packets get better service?
 - Bits in packet header *marked by network*, not client
 - No preemptive reservation
- Give some traffic better treatment than other
 - Application requirements: interactive vs. bulk transfer
 - Economic arrangements: first-class versus coach
- What kind of better service could you give?
 - Fewer drops
 - Lower delay
 - Lower delay variation (jitter)
- Deals with traffic in aggregate
 - Provides weaker service guarantees
 - But much more scalable

Differentiated services (DiffServe)

- Ingress routers entrance to a DiffServ domain
 - Police or shape traffic
 - Set Differentiated Service Code Point (DSCP) in IP header
- Core routers
 - Implement Per Hop Behavior (PHB) for each DSCP
 - Process packets based on DSCP

Combining IntServe and DiffServe

QoS today

- End-to-end QoS across multiple providers/domains is not available today
- Issue #1: complexity of payment
 - Requires payment system among multiple parties
 - And agreement on what constitutes service
 - Diffserv tries to structure this as series of bilateral agreements ...
 - ... but lessens likelihood of end-to-end service
 - Architecture includes notion of "Bandwidth Broker" for end-to-end provisioning
 - Solid design has proved elusive
 - Need infrastructure for metering/billing end user

QoS today

- Issue #2: prevalence of overprovisioning
 - Within a large ISP, links tend to have plenty of headroom
 - Inter-ISP links are not over provisioned, however
- Is overprovisioning enough?
 - If so, is this only because access links are slow?
 - What about Korea, Japan, and other countries with fast access links?
 - Disconnect: ISPs overprovision, users get bad service
- Key difference: intra-ISP vs. general end-to-end

Exploiting lack of e2e QoS

- Suppose an ISP offers their own Internet service • E.g., portal (ala' Yahoo) or search engine (ala' Google)
- Then it's in their interest that service to Yahoo or Google is inferior
 - So customers prefer to use their value-added services
- ISP can
 - recognize traffic to competitor and demote it
 - charge competitor if they want well-provisioned paths
 - just not put effort/\$ into high-capacity interconnects w/other ISPs; congestion provides traffic demotion directly
 - Works particularly well for large providers w/ lots of valuable content

QoS summary

- Basic mechanism for achieving better-than-best-effort performance: **scheduling**
 - Multiple queues allow priority service
 - **Fair queuing** provides isolation between flows
- IntServ provides per-**flow** performance guarantees
 - But lacks scalability
- DiffServ provides per-**aggregate** tiers of relative perf.
 - Scalable, but not as powerful
- <u>Neither</u> is generally available end-to-end today
- ISPs manipulating what services receive what performance raises issues of: **network neutrality**